

Software Documentation

enaio® appconnector

Version 8.50

All software products as well as all related extension programs and additional functions are registered
and/or in-use trademarks of OPTIMAL SYSTEMS GmbH, Berlin or its subsidiaries. They may only be
used according to a valid licensing agreement. The software as well as related documentation are
protected by German and international copyright law. Unauthorized duplication and sales is plagiarism
and subject to criminal prosecution. All rights reserved, including reproduction, transmission,
translation, and storage with/on all kinds of media. For all preconfigured test scenarios or demo
presentations: All company and person names which occur in examples (screenshots) are fictional. Any
resemblance to existing companies or persons is purely coincidental and unintentional.

Copyright 1992 – 2017 by OPTIMAL SYSTEMS GmbH
 Cicerostraße 26
 D-10709 Berlin

07.04.2017

Version 8.50

enaio® appconnector Contents

enaio® Page 3

Contents
Contents .. 3

Introduction .. 4

enaio® appconnector ... 5
About enaio® appconnector .. 5

IT Security ... 5
System Requirements .. 5
Installation ... 6

Installing a Hotfix or Patch ... 6
Core Service Update .. 7

Configuration .. 7
Configuring the JVM .. 7
The enaio® appconnector Configuration File ... 8
enaio® client ... 12
Capabilities of enaio® appconnector .. 12
enaio® apps ... 15
Script Language ... 18

DropTargets ... 19
Configuration .. 20
Testing DropTargets ... 42

Push Notification Service for enaio® apps ... 42
Configuration .. 42

Attachment .. 44
Integrating enaio® appconnector with .NET .. 44

Integration Possibilities... 44
Authentication ... 46
Handling JSON Responses Given by enaio® appconnector 47

API Documentation .. 49
General ... 49
Authentication ... 49
Services ... 49
Results .. 110

enaio® appconnector About enaio® appconnector

enaio® Page 4

Introduction

This manual is available as a PDF file. The PDF file is installed in the
documentation directory. Adobe Reader can be used to read the document on-
screen, to quickly search for particular terms, or to completely or partially print it.

This manual describes how to install and configure the enaio® appconnector
interface, which must be installed in order to use enaio app® and perform user-
oriented queries from within Web applications, for example.

How to use enaio® appconnector as the Details Preview in enaio® client can be
found in the Administration handbook. The user guide for enaio® appconnector as
a Details Preview can be found in the enaio® client handbook.

enaio® appconnector About enaio® appconnector

enaio® Page 5

enaio® appconnector

About enaio® appconnector
enaio® appconnector is an enaio® core service.

The core services are default components of enaio® and are required for operating
the enaio® platform and a proper functioning of the individual enaio®
components.

As it is a REST interface (Representation State Transfer) enaio® appconnector
provides resource-oriented, flexible HTTP access to index and document data in
enaio®.

Thus, enaio® appconnector offers several application areas:

§ It serves as an interface, for example, to mobile applications, such as
enaio® app for Android-based smartphones, iPhones, and tablets.

§ It can be deployed as the Details Preview for displaying index data and
other data in enaio® client and other external applications.

The OSRest API documentation is included in the Attachment.

IT Security
Mobile applications are designed to be used on-the-go and are running on small,
portable smartphones or tablets. However, in a moment of carelessness, these
devices can easily be stolen by another person. Furthermore, apps that have been
installed unconsciously or by a third party can pass unnoticed and read out
information, posing a significant risk to the owner.

Thus, mobile applications must ensure the security of sensitive data even in case of
theft. Detailed information on IT security concerning the use of enaio®
appconnector and enaio® app can be found in the system manual, in the 'Security'
chapter.

System Requirements
enaio® appconnector is provided together with an Apache Tomcat version 6.

Due to security reasons, it is recommended to run the application server in a DMZ
with an upstream web server (e.g. apache HTTPD Server).

For security reasons, the use of SSL encryption is recommended.

This can either be transferred by an Apache Tomcat Server or an upstream web
server. It is additionally recommended to configure compression of the contents
with Gzip (e.g. with the Apache module mod_deflate).

enaio® appconnector Installation

enaio® Page 6

The following system requirements must be met in order to install and run enaio®
appconnector:

§ The 'APP' license has to be registered in enaio® server. The 'MOB' license
must be registered for enaio® app.

§ The system role 'DMS: Supervisor' is required for the configuration.

Installation
The enaio® appconnector REST interface is installed as a service through the enaio®
setup. To do so, select the enaio® appconnector core service in the setup.

The runtime environment (JDK and application server) is also automatically
installed.

The installed runtime environment should be used only for this core service,
because when updating the core service the runtime environment is updated as
well. If other enaio® or third-party components are run in the runtime
environment, update errors may occur or the components may not be run after an
update anymore.

The following data must be entered during the installation process:

§ Server name and port

§ Name and password of the technical user

The service is automatically registered with enaio® server during the setup.

The 'Server: Switch job context' system role must be assigned to the technical user
whose user account is used to execute enaio® appconnector.

The installation of enaio® appconnector is then complete, and you can start the
'osrest' application in the Web Application Manager.

enaio® appconnector registers its service endpoint with enaio® server during
installation, so that it can be read by other components. You can view and change
the service endpoint in enaio® enterprise-manager under Server properties >
Category: Services > 'Core Service' > Service endpoint.

Installing a Hotfix or Patch
When installing a hotfix or patch, only those files that differ from the current
version are replaced. Updating your installation to a newer version is not possible
using a hotfix or a patch.

A hotfix or patch replaces only a few system files, so the enaio® appconnector
installation does not need to be reconfigured.

A hotfix does not back up the existing enaio® appconnector installation.

Before replacing files, it is checked whether adequate file versions are available at
hotfix or patch installation. If this is not the case or a newer hotfix or patch was

enaio® appconnector Configuration

enaio® Page 7

already installed, no files will be replaced. The hotfix and patch installations will be
canceled reporting a message that the version of the installed service is wrong.

Hotfixes (osappconnector_hotfix.exe) are located in the SP directory of the
installation data.

Patches (osappconnector_patch.exe) can be downloaded from the OPTIMAL
SYSTEMS partner portal, the service portal for partners and customers of the
OPTIMAL SYSTEMS group.

Note that, as soon as an installation has been patched, the SP directory will not be
read out during future updates anymore. Supplement changes can then be installed
only by patch. A patch installation cannot be undone.

Core Service Update
A core service update can be performed from the enaio® setup.

A backup of the current configuration file versions is performed automatically.
After an update, the backed up configuration files can be found in the subdirectory
backup-(timestamp) of the core service.

Configuration
A configuration file is available for configuring enaio® appconnector.

If enaio® appconnector was installed manually and not via the enaio® setup, you
will need to enter the Home URL of enaio® appconnector in the Server properties
> Category: Services > AppConnector area of enaio® enterprise-manager.

Example: http://localhost:8060/osrest

Before editing the configuration file, you also have to configure the JVM (see
'Configuring the JVM').

Configuring the JVM
As enaio® appconnector uses an external directory for its configuration data, you
must create a directory outside of the Apache Tomcat directories, and copy the
contents of the …\services\os_appconnector\osappconnector-
<Version>.zip\osappconnector\configuration installation data directory to
this new location.

Then open the Apache Tomcat properties dialog and enter the directory outside of
the Tomcat installation, e.g. Dosrest-data=c:/osrest-data on the Java tab in the
osrest-data system property.

https://www.optimal-systems.de/OSCAS/login?service=http%3A%2F%2Fwww.optimal-systems.de%2Fecm2%2Fsecure%2Fportal.html

enaio® appconnector Configuration

enaio® Page 8

enaio® appconnector requires a minimum JVM heap size (initial memory pool) of
256 MB and a maximum size (maximum memory pool) of 768 MB. These values
are considered initial sizes, and it is recommended to adapt them to the specific
conditions depending on whether other applications are run on the application
server or whether very large documents have to be processed. It is recommended to
set the storage for JVM administration (permanent generation) to 256 byte ('-
XX:MaxPermSize=256m').

The enaio® appconnector Configuration File
To configure enaio® appconnector, edit the osrest.properties configuration file
in the application directory …\services\OS_Appconnector\configuration.

The 'Server: Switch job context' system role must be assigned to the technical user
whose user account is used to execute enaio® appconnector.

The following settings can be configured in the configuration file:

Server Connection

connection.string Connection data to the server, following the
pattern [Name|IP]:[Port]:[Weighting].
Several servers are separated by the #
character. The server's weighting indicates the
possibility (in percent) that a connection to
the server is established. If you use one server
only, enter the value '100'.

Example:
localhost:4000:50#127.0.0.1:4600:50

technical.user.name Name of the technical user

technical.user.password Password of the technical user

Note that the password entered here is not
encrypted. You can also enter the encrypted

enaio® appconnector Configuration

enaio® Page 9

password including # characters from the user
table of the enaio® data base.

General Configuration

default.pagesize Maximum number of hits provided by enaio®
appconnector. The default value is 500 hits.

favouritesPortfolioName For versions earlier than 7.10, a portfolio
containing the favorites can be specified.
Specify the topic.

notifications.skipworkflow Send notifications about incoming workflows

Users will not be notified if the parameter is
set to 'true'.

metadata.defaultmappingname Name of the configuration file that defines
which index fields of the various enaio® object
types are displayed, e.g. in enaio® app and
enaio® sync. The file is in the
…\configuration\schema directory. The file
can be found in the
…\configuration\schema directory.

osecm.default.nameschema Specify whether internal names in the object
definition must be used for index data
assignment. Default value is internal_name.

You can also use the names and index data
fields of DMS objects (name) for assignment,
but the names must then follow the same rules
as internal names (see 'Script Language').

admin.email E-mail address to which app users can send
error messages. In addition to the error
message, the e-mail also contains the stack
trace to the error.

welcomepage URL of a welcome screen suitable for display
on mobile devices

The welcome screen will be shown when
starting enaio® app and when changing the
server profile, provided that the user has
enabled the app configuration parameter
Always show welcome screen.

Please note that the colon in the URL must be
preceded by an escape character.

Example: http\://www.ecm.mobi

Connection to Core Services

base.url Basic URL of enaio® appconnector

enaio® appconnector Configuration

enaio® Page 10

The URL will be read automatically from the
server registry and entered here. If you enter a
URL yourself, the registry value will be
ignored.

fileservice.
contentviewerurl

Base URL to enaio® contentviewer

It will be read out automatically from the
server registry and entered here. If you enter a
URL yourself, the registry value will be
ignored.

fileservice.
documentviewerurl

Base URL to enaio® documentviewer

enaio® documentviewer creates previews of
enaio® objects, which can be viewed with
enaio® app, for example. The URL will be read
automatically from the server registry and
entered here. If you enter a URL yourself, the
registry value will be ignored.

Example: https://demo.optimal-
systems.org/osdocumentviewer

services.
renditioncache

URL of the rendition service

The URL specified here will overwrite the
corresponding value in enaio® enterprise-
manager.

services.
detailsviewer

URL of enaio® detailsviewer

The URL specified here will overwrite the
corresponding value in enaio® enterprise-
manager.

fileservice.
osweburl

Base URL to enaio® webclient

This URL is required to edit the content of
DMS objects in enaio® web-client on your
mobile device, for example. These can
otherwise only be viewed in enaio® app.

Example: https://demo.optimal-
systems.org/osweb

extractionservice.url Base URL to enaio® extraction

If you would like to use these components
(extraction of EXIF files from audio, video,
and image files, XMP data from Office and
PDF documents, and default properties from
e-mails in MSG and EML formats), contact
the OPTIMAL SYSTEMS Professional Services
team.

Authentication

https://demo.optimal-systems.org/osweb
https://demo.optimal-systems.org/osweb

enaio® appconnector Configuration

enaio® Page 11

authentication.usebasic If it should be possible to log in through basic
authentication, 'true' must be entered.

authentication.usebasic.
windowsauth

If it should be possible to log in through
Windows authentication, 'true' must be
entered.

authentication.
defaultdomain

Default Windows domain for basic
authentication

authentication.
usentlm

The NTLM authentication can be activated if
necessary ('true'). However, make sure that
the authentication of all core services is
applied by default by enaio® gateway.

authentication.
useprofileuser

A profile user can be used ('true') when the
service needs to be addressed without
authentication.

The parameters profile.user.password and
profile.user.name are then used to specify
the name and password of the profile user.

profile.user.name Name of the profile user

This information is only required if the
authentication.useprofileuser parameter
was set to 'true.'

profile.user.password Password of the profile user

This information is only required if the
authentication.useprofileuser parameter
was set to 'true.'

Note that the password entered here is not
encrypted. You can also enter the encrypted
password including # characters from the user
table of the enaio® data base.

authentication.
restrictaccesstogroups

OS groups that will receive access to the
service

Use the comma to separate multiple groups.
User must always be a member of all groups
specified here in order to have access to the
service.

Pushnotification

services.pushnotification.
enabled

This must be set to 'true' for the system to
send push notifications to mobile devices.

services.pushnotification.
production

Internal parameter that cannot be changed.
Changes will prevent the push notification
service from working.

enaio® appconnector Configuration

enaio® Page 12

services.pushnotification.
version

Internal parameter that cannot be changed.
Changes will prevent the push notification
service from working.

services.pushnotification.
proxy.enabled

If a proxy is used to connect to the Internet,
this must be set to 'true.'

services.pushnotification.
proxy.address

If a proxy is used to connect to the Internet, its
address must be specified here.

services.pushnotification.
proxy.port

Port of the proxy server

services.pushnotification.
proxy.password

Password of the proxy user

services.pushnotification.
proxy.username

Name of the proxy user

res.revision Internal parameter that cannot be changed.

Settings for the push notification service are described below ('Push Notification
Service for enaio® apps').

The core service must be restarted for the changes made to the configuration file to
take effect.

enaio® appconnector logs all actions to the osrest.log file in the application
directory …\services\OS_Appconnector\configuration\logs.

enaio® client

Profile pictures for notes in the details preview
The details preview in enaio® client makes it possible to directly input text notes
next to which the author's profile picture is shown.

Profile pictures will only be displayed if JPG images for users (of size 64x64 pixels)
are present in the application directory
…\services\OS_Appconnector\configuration\avatar. The names of the
pictures must match the enaio® user names, for example root.jpg or demo.jpg.

Capabilities of enaio® appconnector
The capabilities of enaio® appconnector can be configured in the
osrest.caps.xml configuration file, located in the application directory
…\services\OS_Appconnector\configuration.

The capabilities of an installation depend on several aspects, including the version
of enaio® appconnector, the enaio® licenses, administrative restrictions, and the
system roles of the enaio® user.

Capabilities can be enabled or disabled (true/false) or have values. Capabilities
apply to Android, iOS, and Windows devices, unless values for the respective

enaio® appconnector Configuration

enaio® Page 13

platform are specified in the configuration. You can control this by including the ua
attribute in the defaultto element of the corresponding capability.

Example:

<oscap name="PlatformNotifications" source="POL">
 <defaultto ua="ios" value="true"/>
 <defaultto ua="android" value="false"/>
 <defaultto ua="other" value="false"/>
</oscap>

The following settings can be configured here:

Category Capability name Function Default

Version-dependent capabilities

VER DateRanges Time intervals can be
specified via 'from' and 'to'
dates.

true

VER MarkInboxItemsAsRead All elements will be
displayed differently
depending on whether or
not they have been read.

true

License-dependent capabilities

LIC Capture The camera entry or photo
library entry is displayed in
the DropTarget list.

true

LIC Fulltext The full text search is
displayed in the queries list.

true

LIC Import The capture area is enabled
or disabled.

true

LIC Inbound The 'Open in mobileDMS'
feature is available for
external apps.

true

LIC/POL Offline Documents are cached and
favorites are available
offline. If disabled, all
documents are removed
from the app storage after
closing the document
viewer.

true

LIC/POL Outbound The 'Open document'
feature is available in the
action menu of the
document viewer.

true

enaio® appconnector Configuration

enaio® Page 14

LIC workflow Indicates if workflows are
displayed on the inbox tab.

true

Policy-dependent capabilities

POL PlattformNotifications Indicates if the server profile
option 'Push notifications'
can be enabled.

true

POL AllowDetailsView The document viewer is
available. If disabled, only
index data are displayed.

false

POL AllowInbox Displays the 'Inbox' section. true

POL AllowQueries Provides the queries tab. true

POL AllowUsertray Provides the entry 'User
tray' in the queries list.

true

POL CacheTime Indicates how long
documents are kept in the
app storage and are
available offline. An integer
value for the number of
minutes must be entered
here, e.g. 10080 for 7 days.

10080

POL ForceClientSSL The client will check
whether encryption is used
for all data exchanges.

POL ForcePinLock Specifies whether the app
must be secured using a PIN
lock. If 'true,' users can only
connect to the server if a
PIN lock has been set up.

false

POL ForceSSLTrust Specifies whether users can
enable the server profile
option 'Trust server
certificate,' letting them
establish a connection to
enaio® appconnector even
with invalid SSL server
certificates.

false

POL ForceStartView With this capability, the
start tab can be specified.
The values are: inbox,
queries, favorites, outbox.

-

enaio® appconnector Configuration

enaio® Page 15

POL ForceWelcome Specifies if the welcome
page is displayed at every
start. If 'true', this option
cannot be disabled in the
settings.

false

POL MaxHierarchyDepth Hierarchy depth of cached
favorites objects

10

POL AllowFavorites Displays the 'Favorites'
section

true

POL AutoReloadInbox Specifies the interval (in
minutes) at which the inbox
is reloaded.

Permitted values: 0 (=
disabled), 1, 5, 10, 30, 60

0

POL AllowLocation Specifies whether an object's
location can be identified.

true

Other capabilities

CFG UrlRenService URL of the enaio® rendition
service

CFG WelcomeURL A server's welcome page is
displayed every time a new
connection to this server is
established.

true

enaio® apps

Showing Index Data
In order to display enaio® objects on mobile devices with enaio® apps, you will
need to define which index data fields of the individual object types will be visible
in the app. To do so, assign enaio® index data fields to the fields in the app. These
can be assigned in the OSMetadata.xml configuration file.

Without the assignment, DMS objects are listed in the app but they cannot be
identified due to unfilled fields.

These assignments will also be used for enaio® sync.

The OSMetadata.xml file is installed by the setup and can be found in the
configuration\schema directory. As the OSMetadata.xml configuration file
contains sample data by default, you will need to adjust the file.

The sample configuration file is structured as follows:

<?xml version="1.0" encoding="UTF-8"?>
<archive>
 <model>
 <property name="title"/>

enaio® appconnector Configuration

enaio® Page 16

 <property name="info"/>
 </model>
 <cabinet name="Customer">
 <object name="Miscellaneous">
 <property name="title" field="Type"/>
 <property name="info" field="Short text"/>
 </object>
 <object name="Supportcall">
 <property name="title" field="Call_Nr + ' ' + Status"/>
 <property name="info" field="Problem"/>
 </object>
 <object name="Sales">
 <property name="title" field="Type"/>
 <property name="info" field="Short text"/>
 </object>
 <object name="Customer">
 <property name="title" field="Company name"/>
 <property name="info" field="Street + ' ' + ZIP + ' ' +
Location"/>
 </object>
 <object name="Email">
 <property name="title" field="'E-mail from: ' +
MAIL_FROM"/>
 <property name="info" field="MAIL_SUBJECT"/>
 </object>
 <object name="Person">
 <property name="title" field="FirstName + ' ' +
LastName"/>
 <property name="info" field="Classification"/>
 </object>
 <object name="Incoming invoice">
 <property name="title" field="'Invoice ' +
InvoiceNumber"/>
 <property name="info" field="'From ' + InvoiceDate + ',
' + Status"/>
 </object>
 <object name="Document">
 <property name="title" field="Type"/>
 <property name="info" field="empty(Description) ?
'empty' : Description"/>
 </object>
 <object name="History">
 <property name="title" field="Type"/>
 <property name="info" field="Topic"/>
 </object>
 </cabinet>
 <typeless>
 <property name="title" field="if (OBJECT_MAIN == 3) { y=
'Image'; } else { y = 'File'; y }"/>
 <property name="info" field="'Created on: ' +
OBJECT_CRDATE"/>
 </typeless>
 <notification>
 <workflow>
 <property name="title" field="ActivityName"/>
 <property name="info" field="ActivitySubject"/>
 </workflow>
 </notification>
</archive>

The fields title and info are defined in the <model> area and displayed in enaio®
apps, and can be filled with the index data of enaio® object types.

enaio® appconnector Configuration

enaio® Page 17

The tag <cabinet name="name of the cabinet"> is
then entered for every cabinet in the configuration
file. Within this tag, index data fields are mapped for
the individual object types (<object name="Name of
the object"). For this purpose, the name of the field
is defined in the <property> tag in the name attribute,
and the index data from enaio® are referenced in the
field attribute. It is possible to freely configure the
values of different index data fields using a special
script language (see 'Script Language').

Typeless documents are defined by the <typeless>
tag. In this tag, the main type of the object
(OBJECT_MAIN) and the capture date
(OBJECT_CRDATE) are assigned to app fields.

Please note that only internal object type names of the object definition can be used
(see the 'enaio® editor' handbook) to map enaio® index data.

Filing Objects
The app can be used to create new objects at a location in enaio®. By default, users
can select from all object types to which they also have access in enaio® client. Also
by default, the index data forms only contain the mandatory fields of the object
types.

Using the OSMetadata.xml configuration file, you can specify which object types
should not be visible in the app, and which index data fields should be shown in
addition to the mandatory fields.

To hide object types for the filing tray, insert the tag <insert active> and set it to
'false.' The default value of the tag is 'true.'

Example:

 <object name="Sales">
 <property name="title" field="Type"/>
 <property name="info" field="Short text"/>
 <insert active="false" />
 </object>

To display additional index data, insert the tag <insert active> for each object
type and specify inside it all index data fields that should be shown in the app in
addition to the mandatory fields when filing an object.

Example:

<object name="Miscellaneous">
 <property name="title" field="Type"/>
 <property name="info" field="Short text"/>
 <insert active="true">
 <property field="Type"/>
 <property field="Short text"/>
 </insert>
</object>

enaio® appconnector Configuration

enaio® Page 18

Script Language
To guarantee processing in the script environment, the internal names of the
enaio® object types must be structured as follows: Names begin with the characters
from a to z, from A to Z, or &. The characters from 0 to 9, from a to z, from A to Z
or the characters _ or $ can be used afterwards. The names of variables are case-
sensitive.

The following names are reserved and cannot be used as variable names: or, and,
eq, ne, lt, gt, le, ge, div, mod, not, null, true, false, and new.

To assign index data fields from enaio® to fields in enaio® apps, use the script
language described below.

Language Elements

Statements Use a semicolon to terminate statements.

Blocks Blocks are different statements enclosed by braces.

Assignments Values can be assigned to variables using the equals sign:

var='value';

Literals

Integer One or more digits from 0 to 9.

Floating
Point

One or more digits from 0 to 9 followed by a decimal point and
further digits from 0 to 9.

Boolean true or false

String Strings enclosed by single quotation marks:

'Hello world'

Functions
empty Returns true if the following expression is null.

An empty string, e.g. empty(var1);

size Returns the length of a string, e.g. size('Hello');

Operators
Logical
operators

AND:

cond1 and cond2

cond1 && cond2

OR:

cond1 or cond2

cond1 || cond2

NOT:

!cond1

not cond1

enaio® appconnector DropTargets

enaio® Page 19

Conditional
operators

The common operator condition ? if_true : if_false as
well as the short form value ?: if_false can be used:

val1 ? val1 : val2

val1 ?: val2

Relational
operators

e.g.

val1 == val2

val1 eq val2

val1 != val2

val1 ne val2

val1 < val2

val1 lt val2

val1 <= val2

val1 le val2

val1 >= val2

val1 ge val2

Regular
expressions

e.g.

var1 =~ 'abc.*'

var1 !~ 'abc.*'

Calculations Additions, subtractions, multiplications and divisions can be
carried out:

val1 + val2

val1 - val2

val1 * val2

val1 / val2

val1 div val2

Condition

if e.g.

if ((x * 2) == 5) {
 y = 1;
} else {
 y = 2;
}

DropTargets
DropTargets can be used to import data and documents into the enaio® system
using enaio® appconnector. With drop targets, various actions in the system can be
executed, such as starting a workflow or creating or updating DMS objects.

Each droptarget describes exactly one import scenario.

Droptargets are written in Jelly which is a script language used in XML scripts.

Droptargets are, for example, implemented by script. The necessary API call is
found in the appendix (see '/osrest/api/documentfiles/droptargets/[targetname]').

enaio® appconnector DropTargets

enaio® Page 20

Configuration
DropTargets must be saved to the
...\services\OS_Appconnector\configuration\droptargets application
directory. The two demo DropTargets demo.xml and demo2.xml can already be
found in this directory.

Each droptarget is defined in an XML file. The XML file must not contain umlauts
or special characters unless they are UML encoded.

The XML file name serves as the droptarget name.

DropTarget Structure
The following sections describe the basic structure of droptargets and further
elements.

General Structure

As usual for Jelly scripts, a droptarget starts with a definition of required
namespaces.

You must then select a cabinet that actions are executed in. It is also possible to
select multiple cabinets at once, which will then be processed in sequence.

Within a cabinet you can define actions. Creating server jobs that are consecutively
executed is also possible. For each server job you must specify a DMS object.

The following example creates a cabinet with the internal name 'customer' with a
folder for a customer named Peter Smith.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="customer">
 <os:insert>
 <os:folder>
 <os:field key="name">Mueller</os:field>
 <os:field key="firstname">Franz</os:field>
 </os:folder>
 </os:insert>
 </os:cabinet>
</j:jelly>

The key attribute is used to identify the cabinet by its internal name.

Using the keytype attribute, you can define whether the internal name
(internal_name) or the name (name) of a cabinet must be specified in the
DropTarget. By default, the internal name must be specified, so the keytype
attribute is only necessary in the script if you would like to use the name of a DMS
object instead of the internal name.

Then define:

<os:cabinet key="Customer" keyType="NAME"/>

You can change the default behavior by setting the osecm.default.nameschema
parameter in the osrest.properties enaio® appconnector configuration file from
internal_name to name. However, names must then follow the same rules as

enaio® appconnector DropTargets

enaio® Page 21

internal names (see 'Script Language' and 'The enaio® appconnector Configuration
File').

Links

Server job results must often be further processed. To allow this, use the id and ref
attributes. With id you can add a DMS object to the Jelly context, and with ref you
can then refer to this DMS object in other script lines.

With the following example shows how to find and then delete a DMS object.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="customer">
 <os:search id="myfolder">
 <os:folder>
 <os:field key="name">Mueller</os:field>
 <os:field key="firstname">Franz</os:field>
 </os:folder>
 </os:search>
 <os:delete>
 <os:folder ref="myfolder"/>
 </os:delete>
 </os:cabinet>
</j:jelly>

Beneath the 'myfolder' identifier the search result is added to the Jelly context. The
<folder> tag within the <delete> tag refers to the search result. As a result, the
found folder is deleted. The <search> tag by default adds the first result to the Jelly
context.

Server Jobs Processing Several DMS Objects

For some server jobs, more than one DMS object must be specified. The purpose of
each DMS object must be defined explicitly. This is done via the purpose attribute.

The following example shows how to create a document using the <insert> tag.
First, a DMS object with the purpose="INSERT" attribute – here a document with
the internal name 'doc' – is defined as the DMS object to be created. The DMS
object with the purpose="LOCATION" attribute then defines the location, here a
folder with the OSID '5566'.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="customer">
 <os:insert file="mypdf">
 <os:document id="mynewdocument" key="doc"
purpose="INSERT"/>
 <os:folder osid="5566" purpose="LOCATION"/>
 </os:insert>
 </os:cabinet>
</j:jelly>

Most server jobs have a default purpose. This is assigned to the first DMS object for
which the purpose attribute was not set. If, in the above example, the
purpose="INSERT" attribute was not been specified for os:document, this attribute
would be set automatically.

enaio® appconnector DropTargets

enaio® Page 22

Access to Variables

Within a Jelly context different variables can be accessed. For example:

§ variables passed to the Jelly script

§ IDs and object type IDs of DMS objects

§ Attributes of DMS objects, i.e. their field values

These attributes are accessed using this notation:

${NAME_OF_PASSED_ATTRIBUTE}
${OBJECTNAME.FIELDNAME}
${OBJECTNAME['FIELDNAME']}

In line 1, a passed attribute is accessed. The lines 2 and 3 access the field of a DMS
object, whereas the notation in line 3 is necessary only if the field name is empty
and/or contains special characters.

Besides, there are reserved fields that enable access to specific object information:

${OBJECTNAME.key}
${OBJECTNAME.keyType}
${OBJECTNAME.osid}
${OBJECTNAME.objectTypeId}

Logging

Object information can be used to create meaningful log entries.

The following example shows how to create a support call and write a log entry
with log level INFO.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="Customer" keyType="name">
 <os:insert>
 <os:register key="Supportcall" id="suppcall">
 <os:field key="Call-Nr">${myNumber}</os:field>
 </os:register>
 <os:folder osid="1494"/>
 </os:insert>
 <os:logger level="info">The support call ${myNumber} with
OSID ${supportcall.osid} was created.</os:logger>
 </os:cabinet>
</j:jelly>

It is recommended to put <logger> tags outside of server jobs. Otherwise, logs will
be written before server jobs are completely processed.

Handling Several Hits

The hit number of a search can be defined using the search mode. By default, the
first hit is added to the Jelly context. In addition, you can use the mode="ALL"
attribute to get all hits.

${OBJECTNAME[0].FIELDNAME}
${OBJECTNAME.FIELDNAME}
${OBJECTNAME[n].FIELDNAME}

In line 1, the field of the first DMS object is addressed. The first DMS object can be
addressed without specifying an index (line 2), as well. That way it is possible to

enaio® appconnector DropTargets

enaio® Page 23

change the search mode without the need to adapt other script lines. Further DMS
objects must always be addressed by the index (line 3).

Multi-Purpose Tags

Often used process flows have been collected in tags.

The <select> tag, for example, finds and updates a DMS object, or creates one if
none is present.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="qsmanuals">
 <os:select id="folder">
 <os:folder purpose="SEARCH">
 <os:field key="name">User manual</os:field>
 <os:field key="author">John Doe</os:field>
 </os:folder>
 <os:folder purpose="INSERT, UPDATE">
 <os:field key="name">User manual</os:field>
 <os:field key="author">John Doe</os:field>
 <os:field key="visiblefor">Schmidt</os:field>
 <os:field key="editfor">Meier</os:field>
 </os:folder>
 </os:select>
 </os:cabinet>
</j:jelly>

It is possible to define multi-purpose objects. The example above shows a folder
used for inserting and updating.

By default, the <update> and <insert> tags have their value set to 'true.' For this
reason, even DMS objects must be defined for the purpose="INSERT, UPDATE"
purpose.

Using Processors

Metadata can be read out and used in the droptarget with the help of file
processors.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:email id="Mail" />
 <os:cabinet key="Emailarchive" keyType="name">
 <os:insert id="InsertedObject" >
 <os:register osid="14024315" purpose="LOCATION"/>
 <os:document key="Email" purpose="INSERT">
 <os:field key="MAIL_TO"
keyType="Internal_Name">${Mail.TO}</os:field>
 <os:field key="MAIL_FROM"
keyType="Internal_Name">${Mail.FROM}</os:field>
 </os:document>
 </os:insert>
 </os:cabinet>
</j:jelly>

The e-mail processor is defined in the second line. Files in supported file formats
can be passed to the DropTarget, and their readable metadata can be referenced
using the attribute ${<id>.<attribute>}.

Processors are independent of cabinets and therefore do not need to be inside
<cabinet> tags.

enaio® appconnector DropTargets

enaio® Page 24

Formatting Dates

In order to format dates according to a desired pattern, Jelly provides individual
JSP Standard Tag Library oriented means.

<j:jelly xmlns:j="jelly:core" xmlns:fmt="jelly:fmt"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <j:new var="currentDate" className="java.util.Date"/>
 <fmt:setLocale/>
 <fmt:formatDate pattern="yyyy" value="${currentDate}"
var="year"/>
</j:jelly>

In line 1, the fmt namespace is defined. A variable is then created, formatted as
yyyy, and added to the context as year. You can access the current year within the
Jelly script using ${year}.

Converting the Date

enaio® works with the following date types: UNIX timestamp, German date, and
German date with time. Applications that use the droptargets should always
provide a date as a UNIX timestamp. As enaio® cannot carry out a conversion
itself, this must be performed within the droptargets.

<j:jelly xmlns:j="jelly:core" xmlns:fmt="jelly:fmt"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <j:new var="currentDate" className="java.util.Date">
 <j:arg value="${(timestamp * 1000)}" type="long"/>
 </j:new>
 <fmt:setLocale/>
 <fmt:formatDate pattern="dd.MM.yyyy" value="${currentDate}"
var="date"/>
</j:jelly>

In lines 2-4, the timestamp variable that contains a UNIX timestamp is converted
to a Java date object. In line 7, this object is converted to the dd.MM.yyyy format
and saved to the date variable.

Evaluating date formats and regular expressions

Droptargets, date formats, and regular expressions can be evaluated and processed
in order to assume data from third-party systems.

Example for date formats:

<j:jelly xmlns:j="jelly:core"
 xmlns:utils="jelly:com.os.dtUtils.UtilsTagLibrary">
 <j:new var="date" className="java.util.Date"/>
 <utils:DateFormat id="formatFromDate" value="${date}"
pattern="dd. MMM yyyy"/>

 <utils:DateFormat id="formatFromText" value="GEB:12.12.2002"
inputPattern="dd.mm.yyyy" pattern="yyyy" parsePosition="4"/>
</j:jelly>

To do so, a date object or a date can be passed as a value (value attribute) when
provided as a character sequence. Using a specified pattern (inputPattern attribute),
a character sequence can be imported in accordance with SimpleDateFormat class
rules. The time from which the pattern is to be used can be determined with the
parsePosition attribute (counted becomes zero-based).

enaio® appconnector DropTargets

enaio® Page 25

Example for regular expressions:

<j:jelly xmlns:j="jelly:core"
 xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary"
 xmlns:utils="jelly:com.os.dtUtils.UtilsTagLibrary">
 <utils:RegexFormat id="formattedText" value="GEB:12.12.2002"
pattern="([0-9]{4}$)"/>

 <os:logger level="INFO">${formattedText[0]}</os:logger>
</j:jelly>

The value is written to the value attribute. The regular expression is specified in the
pattern attribute.

To be able to access the results of the formatting, groups must be defined in the
regular expression. The results can then be accessed using the respective group's
number.

Add Several Table Rows

Jelly also allows you to add more than one table row within a DMS object. To do
so, the <forEach> tag from the Jelly namespace is used.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="customer">
 <os:update>
 <os:folder id="myfolder">
 <os:table key="history">
 <j:forEach items="${hist}" var="entry">
 <os:row>
 <os:field key="date">${entry.date}</os:field>
 <os:field
key="username">${entry.user}</os:field>
 <os:field
key="state">${entry.state}</os:field>
 <os:field
key="priority">${entry.prio}</os:field>
 </os:row>
 </j:forEach>
 </os:table>
 </os:folder>
 </os:update>
 </os:cabinet>
</j:jelly>

In line 6, a loop is defined, iterating over a list which exists under the name hist in
the Jelly context. Individual list entries are available under the name entry. Within
the loop, the <row> tag must be used to define the individual columns of the table
row.

The following example shows the variable structure in JSON.

{
 "hist":[
 {
 "date":"01.02.2001",
 "user":"Hans",
 "state":"Negotiation"
 },
 {
 "date":"12.12.2000",
 "user":"Petra",

enaio® appconnector DropTargets

enaio® Page 26

 "state":"Complete",
 "prio":"high"
 }
]
}

The variable is a list containing key-value-pair (map) entries.

Creating a Reference Copy

A reference copy is created with the <link> tag.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="Emailarchive" keyType="name">
 <os:link>
 <os:document ref="email"/>
 <os:register ref="locationForTheReferenceCopy"
purpose="LOCATION"/>
 </os:link>
 </os:cabinet>
</j:jelly>

Creating a Reference Document

A reference document is created using the <reference> tag.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:cabinet key="Customer" keyType="name">
 <os:reference>
 <os:document key="Email">
 <os:field key="From:">peter@optimal-
systems.de</os:field>
 <os:field key="To:">schmidt@optimal-
systems.de</os:field>
 <os:field key="Date:">12.12.2013</os:field>
 </os:document>
 <os:document ref="documentToBeReferenced"
purpose="SOURCE"/>
 <os:register ref="locationForTheReferenceDocument"
purpose="LOCATION"/>
 </os:reference>
 </os:cabinet>
</j:jelly>

If the document to be referenced comes from another cabinet, another <cabinet>
tag must also be used when searching.

Start a Workflow Process

Within a droptarget you can also initiate workflow processes.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <os:start>
 <os:process wfid="F265B0168961493887A269A30530F0ED"
clientType="OS_DESKTOP_CLIENT">
 <os:datafield type="string"
key="s_EMail">my@email.com</os:datafield>
 <os:datafield type="string"
key="d_Inbox">NO</os:datafield>
 <os:object osid="123456" objectTypeId="141222"/>
 <os:object ref="myfolder"/>
 </os:process>

enaio® appconnector DropTargets

enaio® Page 27

 </os:start>
</j:jelly>

A workflow process is started with the <start> tag. Similar to other server jobs, the
<start> tag must contain a <process> tag that in turn contains a tag of the
<datafield> type.

In addition, you can also define DMS objects to be added to the workflow file.

The <start> tag can be found both in the root and in a <cabinet> tag.

Adding a Description for a Client

If the droptargets are to be used by a Client, information about the droptarget and
the required fields can also be entered.

<j:jelly xmlns:j="jelly:core"
xmlns:os="jelly:com.os.droptargets.DropTargetTagLibrary">
 <description>
 <title>Filing Incoming Invoices</title>
 <longtitle>
 Filing incoming invoices in a separate register of the
customer record.
 </longtitle>
 <helptext>
 help help help
 </helptext>
 <acceptedmimetypes>
 <mimetype>image/.*</mimetype>
 <mimetype>.*/.*pdf</mimetype>
 </acceptedmimetypes>
 <field required="true" type="DATE" size="199"
validate="^4[0-9]{12}(?:[0-9]{3})?$">fieldname</field>
 <cabinet key="Customer">
 <object key="Customer">
 <field key="SUPFEST" validate="^4[0-9]{12}(?:[0-
9]{3})?$">fieldname1</field>
 <field key="Company name">fieldname2</field>
 <field key="State">fieldname3</field>
 </object>
 </cabinet>
 <files>
 <file fileid="DOC_01" filetype="PDF"/>
 <file fileid="DOC_02" filetype="PDF"/>
 </files>
 </description>
</j:jelly>

The description must be given inside the <description> tag. General information
about the DropTarget can be defined using the <title>, <longtitle> and
<helptext> tags. The following way to define fields exist:

1. Enter a field with all required information directly under the
<description> tag.

2. Enter a field in a <cabinet>-<object> structure. The information will
be parsed from the object definition.

The validate attribute is optional. It must be evaluated by the Client.

If several files should also be transferred with the DropTarget, IDs can be set under
the <files> tag. If only one file is transferred, IDs are not necessary and the
internal default name (Default_Files) is used.

enaio® appconnector DropTargets

enaio® Page 28

Tag Overview

DMS Objects And Its Fields

The following tags represent DMS objects in enaio®.

<cabinet>

Use this tag to specify a cabinet that the action is executed in.

Can be contained in Can contain

<root> <search>

<update>

<insert>

<move>

<copy>

<delete>

<link>

<select>

<reference>

<logger>

<return>

Attributes:

§ key: The cabinet identifier.

§ keyType (optional): 'name' or 'internal_name' (default)

<folder>

Use this tag to specify a folder.

Can be contained in Can contain

<search>

<update>

<insert>

<move>

<copy>

<delete>

<select>

<process>

<field>

<table>

Attributes:

§ osid (optional): The OSID of the folder.

§ objectTypeId (optional): The object type ID of the folder.

§ id (optional): ID for access within the Jelly context.

enaio® appconnector DropTargets

enaio® Page 29

§ ref (optional): Reference to another folder tag within the same Jelly
context. All values of the referenced folder will be applied.

<register>

Use this tag to specify a register.

Can be contained in Can contain

<search>

<update>

<insert>

<move>

<copy>

<delete>

<select>

<process>

<field>

<table>

Attributes:

§ key: The register identifier.

§ keyType (optional): 'name' or 'internal_name' (default)

§ osid (optional): The OSID of the register.

§ objectTypeId (optional): The object type ID of the register.

§ id (optional): ID for access within the Jelly context.

§ ref (optional): Reference to another register tag within the same Jelly
context. All values of the referenced register will be applied.

<document>

Use this tag to specify a document.

Can be contained in Can contain

<search>

<update>

<insert>

<move>

<copy>

<delete>

<select>

<process>

<field>

<table>

Attributes:

§ key: The document identifier.

§ keyType (optional): 'name' or 'internal_name' (default)

enaio® appconnector DropTargets

enaio® Page 30

§ osid (optional): The OSID of the document.

§ objectTypeId (optional): The object type ID of the document.

§ id (optional): ID for access within the Jelly context.

§ ref (optional): Reference to another document tag within the same Jelly
context. All values of the referenced document will be applied.

<object>

Use this tag to specify a DMS object without defining whether it is a folder, a
register or a document.

Can be contained in Can contain

<search>

<update>

<insert>

<move>

<copy>

<delete>

<select>

<process>

<field>

<table>

Attributes:

§ key: The DMS object identifier.

§ keyType (optional): 'name' or 'internal_name' (default)

§ osid (optional): The OSID of the DMS object.

§ objectTypeId (optional): The object type ID of the DMS object.

§ id (optional): ID for access within the Jelly context.

§ ref (optional): Reference to another object tag within the same Jelly
context. All values of the referenced DMS object will be applied.

<process>

This tag represents a workflow.

Can be contained in Can contain

<start> <datafield>

<folder>

<register>

<document>

<object>

Attributes:

§ wfid: ID of the workflow family that the process belongs to.

enaio® appconnector DropTargets

enaio® Page 31

§ clientType: Client type for which the process will be started.

OS_DESKTOP_CLIENT: Rich client

OS_MOBILE_CLIENT: Mobile client (app)

OS_WEB_CLIENT: Webclient

<field>

Use this tag to specify a text field.

Can be contained
in

Can contain

<folder>

<register>

<document>

<object>

<row>

Value as clear text or Jelly context variable, e.g.
${myVariable}

Attributes:

§ key: The field identifier.

§ keyType (optional): 'name' or 'internal_name' (default)

§ id (optional): ID for access within the Jelly context.

§ ref (optional): Reference to another field tag within the same Jelly
context. All values of the referenced field will be applied.

<datafield>

This tag represents a data field of a workflow process.

Can be contained
in

Can contain

<process> Value as clear text or Jelly context variable, e.g.
${myVariable}

Attributes:

§ type: Data field type (STRING, INTEGER, DATE).

§ key: The data field identifier

§ id (optional): ID for access within the Jelly context.

§ ref (optional): Reference to another data field tag within the same Jelly
context. All attributes and the value of the referenced field will be
applied.

<table>

Use this tag to specify a table.

enaio® appconnector DropTargets

enaio® Page 32

Can be contained in Can contain

<folder>

<register>

<document>

<object>

<row>

Attributes:

§ key: The table identifier.

§ keyType (optional): 'name' or 'internal_name' (default)

§ id (optional): ID for access within the Jelly context.

§ ref (optional): Reference to another table tag within the same Jelly
context. All attributes and the value of the referenced table will be
applied.

<row>

Use this tag to specify a table row.

Can be contained in Can contain

<table> <field>

Processors

<e-mail>

This tag defines an e-mail processor which facilitates the automatic readout of e-
mail metadata.

Can be contained in Can contain

<table> <field>

Attributes:

§ id: ID for access within the JellyContext.

§ file (optional): Name under which one or several files to be inserted have
been transferred to the DropTarget. If not specified, the default name is
used.

Metadata:

§ TO

§ FROM

§ CC

§ BCC

§ SUBJECT

§ SENT_DATE

enaio® appconnector DropTargets

enaio® Page 33

Supported file formats:

§ ima

§ eml

§ msg

<pdf>

This tag defines a PDF processor which facilitates the automatic readout of PDF file
metadata.

Attributes:

§ id: ID for access within the Jelly context.

§ file (optional): Name under which the files to be inserted have been
transferred to the DropTarget. If not specified, the default name is used.

Metadata:

Supported file formats:

§ pdf

§ pdfa

<image>

This tag defines an image processor which facilitates the automatic readout of
image file metadata.

Attributes:

§ id: ID for access within the Jelly context.

§ file (optional): Name under which the files to be inserted have been
transferred to the DropTarget. If not specified, the default name is used.

Metadata:

§ NAME

§ CREATION_DATE

§ GEO_LOCATION

Supported file formats:

§ JPEG (.jpg, .jpeg, .jpe, .jif, .jfif)

§ TIFF (.tif, .tiff)

§ PSD (.psd)

§ PNG(.png)

§ BMP (.bmp, .dib)

§ GIF (.gif)

§ Camera Raw (.raw, .nef, .cr2, .orf)

enaio® appconnector DropTargets

enaio® Page 34

<autoDetect>

This tag defines an AutoDetection processor which will try to read the meta data of
each file.

Attributes:

§ id: ID for access within the Jelly context.

§ file (optional): Name under which the files to be inserted have been
transferred to the DropTarget. If not specified, the default name is used.

§ documentTypes (optional): Specifies the file types that the processor
should be limited to, separated by commas. If not specified, all Jelly
context files are loaded.

The document types are defined in the following example.

<os:autoDetect id="Mail" documentTypes="msg, ima, eml"/>

Metadata:

§ an overview of all readable metadata can be found at the following
address:

https://tika.apache.org/1.4/api/constant-
values.html#org.apache.tika.metadata.ClimateForcast.ACKNOWL
EDGEMENT

A variable is referenced directly with a Jelly context:

<os:field key="MAIL_TO"
keyType="Internal_Name">${context.getVariable("Mail").get("Message-
To")}</os:field>
<os:field key="MAIL_FROM"
keyType="Internal_Name">${context.getVariable("Mail").get("Message-
From")}</os:field>
<os:field key="MAIL_CC"
keyType="Internal_Name">${context.getVariable("Mail").get("Message-
Cc")}</os:field>

Description

Description tag texts are displayed by default in enaio® apps, provided they are
specified.

The tags described here are part of the OS tag library and must therefore be
specified without namespace.

<description>

This tag serves as a container for the other description tags.

Can be contained in Can contain

<root> <title>

<longtitle>

<helptext>

<cabinet>

enaio® appconnector DropTargets

enaio® Page 35

<field>

<title>

Use this tag to provide the name of a droptarget.

Can be contained in Can contain

<description> Name of the DropTarget

<longtitle>

Use this tag to provide a help text.

Can be contained in Can contain

<description> Description of the droptarget

<helptext>

Use this tag to provide a description of the droptarget.

Can be contained in Can contain

<description> Help text about the DropTarget

<cabinet>

This tag defines the cabinet to be used when parsing the object definition.

Can be contained in Can contain

<description> <object>

Attributes:

§ key: The cabinet identifier.

§ keyType (optional): 'name' or 'internal_name' (default)

<object>

This tag defines the object to be used when parsing the object definition.

Can be contained in Can contain

<cabinet> <field>

Attributes:

§ key: The object identifier

§ keyType (optional): 'name' or 'internal_name' (default)

<field>

This tag defines the object to be used when parsing the object definition.

enaio® appconnector DropTargets

enaio® Page 36

Can be contained in Can contain

<object>

<description>

Name of the variable to be displayed

Attributes:

§ key: The field identifier

§ keyType (optional): 'name' or 'internal_name' (default)

Further attributes (if directly under the <description> tag):

§ required: true or false

§ type: Field type

§ size: length of the field

Server Jobs and Options

The following tags represent server jobs.

<search>

Use this tag to run a combined search. You can define 1-n DMS objects to be
found, where the first DMS object defines the result object.

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ SEARCH 1 time (default): DMS object to be searched for.

§ COMBINED_SEARCH n times: Further DMS objects in the same
cabinet refining the search.

§ LOCATION 0/1 time: Location of the DMS object to be searched for. It
must be a folder or register having the OSID set. The object is not suited
to search for folders.

Attributes:

§ id: Identifier used to access the search results within the Jelly context.

§ mode (optional): Search mode, the following options may be chosen:

§ FIRST (default): Returns only the first hit.

§ ALL: Returns all hits.

§ EXACTLY_ONE: Returns an error if there is more than one hit, or
returns the hit if there is only one.

enaio® appconnector DropTargets

enaio® Page 37

§ AT_LEAST_ONE: Returns an error if there are no hits. Otherwise
returns all hits.

<update>

This tag updates a DMS object. The OSID attribute must be set.

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ UPDATE 1 time (default): DMS object to be updated.

Attributes:

§ file (optional): Name under which a file to be inserted has been
transferred to the DropTarget. For several files, several names must be
specified. If not specified, the default name is used.

<insert>

Use this tag to insert a DMS object at a selected location. The first DMS object
specified is inserted. If it is not a folder, you must define the location, i.e. a folder or
register, through a second DMS object.

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ When inserting a folder

§ UPDATE 1 time (default): Folder to be inserted.

§ When inserting a register or document

§ UPDATE 1 time (default): Register or document to be inserted.

§ LOCATION 1 time: Target location (folder or register)

Attributes:

§ file (optional): Name under which a file to be inserted has been
transferred to the DropTarget. For several files, several names must be
specified. If not specified, the default name is used.

enaio® appconnector DropTargets

enaio® Page 38

<move>

Use this tag to move a register or document to another location. The first DMS
object specified is moved, the second is the target location, i.e. a folder or register.

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ MOVE 1 time (default): Register or document to be moved.

§ LOCATION 1 time: Target location (folder or register)

<copy>

Use this tag to copy a register or document to another location. The first DMS
object specified is copied, the second is the target location, i.e. a folder or register.

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ MOVE 1 time (default): Register or document to be copied.

§ LOCATION 1 time: Target location (folder or register)

<link>

This tag creates a reference copy. Internally, the <copy> tag is invoked with
LINKDOCUMENT=1.

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ MOVE 1 time (default): Object to be copied.

§ LOCATION 1 time: Target location (folder or register)

enaio® appconnector DropTargets

enaio® Page 39

<delete>

Use this tag to delete a specified DMS object. The osid attribute must be set.

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ DELETE 1 time (default): DMS object to be deleted.

<start>

Use this tag to start a new workflow process.

Can be contained in Can contain

<root>

<cabinet>

<process>

<options>

Use this tag to pass further options to a server job.

Can be contained in Can contain

<search>

<update>

<insert>

<move>

<copy>

<delete>

<select>

<option>

<option>

Use this tag to define an option value (true or false).

Can be contained in Can contain

<options> Option value (true or false)

Attributes:

§ key: The option identifier (see also the enaio® server-api manual).

<logger>

Use this tag to write to the log from within a Jelly context.

enaio® appconnector DropTargets

enaio® Page 40

Can be contained in Can contain

All tags in the OS namespace Text to be written to the log

Attributes:

§ level: Log level of entries to be written to the log (see also Commons
Logging – Message Priority Levels).

<return>

Use this tag to export values from a Jelly context.

Can be contained in Can contain

All tags in the OS namespace Value to be exported

Attributes:

§ id (optional): Identifier of the value to be exported. If not specified, the
default identifier (DEFAULT_RETURN_VALUE) is used.

Combined Server Jobs

<select>

This tag executes three functions:

1. search for a DMS object

2. creation of a DMS object if 1. does not return a result

3. updating of the DMS object if 1. did return a result

Can be contained in Can contain

<cabinet> <folder>

<register>

<document>

<object>

Required objects:

§ SEARCH 1 time: DMS object to be found.

§ COMBINED_SEARCH n times: Further DMS objects in the same
cabinet to narrow the search.

§ INSERT 1 time: DMS object to be inserted.

§ UPDATE 1 time: DMS object to be updated.

§ LOCATION 1 time: Location (folder or register) for search and
insertion.

Attributes:

§ id: Identifier used to access the found or created DMS object within the
Jelly context.

http://commons.apache.org/logging/commons-logging-1.0.4/docs/guide.html%23Message%20Priorities/Levels
http://commons.apache.org/logging/commons-logging-1.0.4/docs/guide.html%23Message%20Priorities/Levels

enaio® appconnector DropTargets

enaio® Page 41

§ file (optional): Name under which a file to be inserted has been
transferred to the DropTarget. For several files, several names must be
specified. If not specified, the default name is used.

§ create (true (default) or false): Specifies whether a DMS object is created
if 1. returned no result.

§ update (true (default) or false): Specifies whether the result of 1. is
updated.

Droptarget tools

<utils:DateFormat>

This tag can be used to format dates.

The tag cannot include any other tags and is generally not included in a special tag.
Ideally, it is used within the top level (<jelly>) or in a <cabinet> tag.

Attributes:

§ id: Identifier used to access the result of the formatting within the Jelly
context.

§ inputPattern: Pattern, in accordance with java.text.SimpleDateFormat
class rules, to be used when reading a date in text format.

§ parsePosition: Zero-based position from which an entry date in text
format should begin being read.

§ pattern: Freely definable pattern in accordance with
java.text.SimpleDateFormat class rules, to be used during formatting.

§ value: Date value to be formatted. Can be set as a character sequence or
java.util.Date.

<utils:RegexFormat>

This tag can be used to format regular expressions.

The tag cannot include any other tags and is generally not included in a special tag.
Ideally, it is used within the top level (<jelly>) or in a <cabinet> tag.

Attributes:

§ id: Identifier used to access the result of the formatting within the Jelly
context.

§ pattern: Regular expression

§ value: Text to be formatted.

To be able to access the results of the formatting, groups must be defined in the
regular expression. The results can then be accessed using the respective group's
number.

enaio® appconnector Push Notification Service for enaio® apps

enaio® Page 42

Testing DropTargets
Before providing a new droptarget, it is recommended to test its functionality in a
test system.

These tools may be useful:

§ curl.exe – The command line tool can be used as a test client to run a
droptarget per URL call. It is installed by the enaio® setup and can be
found in the ...\server directory.

§ JSONView browser add-on – The Firefox add-on displays JSON
documents like XML documents. Formatting and highlighting features
are available and fields and objects can be collapsed or expanded.

§ enaio® enterprise-manager – This enaio® component is used to manage
enaio® server, archive media, licenses, etc. All jobs sent to enaio® server
can be monitored under Extended administration > Monitoring > Job
calls.

Push Notification Service for enaio® apps
The push notification service (PnS) is now an integral part of enaio® appconnector,
and will be deployed to notify the user of new messages.

The PnS checks regularly whether new messages of subscriptions, follow-ups or
workflow process steps are available. If this is the case, the app notifies you of every
new message even when it is not active. Users can customize the display of a
message in the app.

The PnS is only available for enaio® app running on iOS.

Configuration
To configure the push notification service, edit the osrest.properties
configuration file in the application directory
…\services\OS_AppConnector\configuration.

enaio® appconnector must be restarted after changing the configuration.

Key name Description

services.pushnotification.enabled To enable the PnS, set the
value to 'true'.

services.pushnotification.proxy.enabled UrbanAirship is integrated via
the Internet. If there is a proxy
server between enaio®
appconnector and the Internet,
set this parameter to 'true.'

services.pushnotification.proxy.address If the proxy server is enabled,
the proxy server address or IP
will be entered here.

enaio® appconnector Push Notification Service for enaio® apps

enaio® Page 43

Example: proxy.my-
company.com

services.pushnotification.proxy.port If the proxy server is enabled,
the port from which the proxy
server with the specified
address can be accessed will be
entered here.

Example: 3128

services.pushnotification.proxy.username If the proxy server is enabled
and a login user name is
required, it will be entered
here.

services.pushnotification.proxy.password If the proxy server is enabled
and a login password is
required, it will be entered
here.

services.pushnotification.production The default setting 'true' must
be left unchanged for
notifications.
In development environments,
'false' switches notifications off
and development notifications
on.

To test you configuration, trigger, for example, a subscription or a follow-up in the
app or enaio® client. Then check whether you have received an app notification
about the change even if the app has not been active.

Information about possible errors in your PnS configuration can be found in the
enaio® appconnector log. The osrest.log file is located in the logs application
directory.

enaio® appconnector Integrating enaio® appconnector with .NET

enaio® Page 44

Attachment

Integrating enaio® appconnector with .NET
The following sections describe technologies and strategies for integrating enaio®
appconnector with .NET using the REST interface.

Note that OS_AppConnector integration requires software developers to have
experiences in .NET programming.

Integration Possibilities
enaio® appconnector is implemented as a REST Web service with the name
OSRest. Features of REST Web services are provided by calling specific URLs. The
features' results are made available as Web server response.

The following strategies are available for integrating enaio® appconnector with
.NET. You can use either the WebClient or the WebRequest class. Both classes are
found in the System.Net namespace of the framework.

Further information on the classes is available in the MSDN (Microsoft Developer
Network) documentation.

The 'WebClient' Class
The WebClient class offers a highly convenient way to call enaio® appconnector.
The class' advantage is that its features are already encapsulated in methods.
However, some settings, such as custom HTTP headers, cannot be made in detail.

The following example illustrates a call with the WebClient class:

WebClient client = new WebClient();
string result =
client.DownloadString("http://localhost:8080/osrest/api/documents");
Console.WriteLine(result);

This way very few lines of code are necessary to list all document types.

There are also more functions you can use, for example:

§ UploadString

§ OpenRead

§ DownloadData

§ DownloadFile

Further information on these features is available in the MSDN documentation.

The 'WebRequest' Class
Calling with the WebRequest class requires you to handle the responses as a
separate stream. The class' advantage is that it allows to fully control
communication. However, the class results in higher programming efforts.

enaio® appconnector Integrating enaio® appconnector with .NET

enaio® Page 45

The following example illustrates a call with the WebRequest class:

HttpWebRequest request =
(HttpWebRequest)WebRequest.Create(@"http://localhost:8080/osrest/api
/documents");
request.KeepAlive = true;
request.Method = "GET";
WebResponse result = request.GetResponse();
Stream resultStream = result.GetResponseStream();
StreamReader readStream = new StreamReader(resultStream,
Encoding.Default);
Console.WriteLine(readStream.ReadToEnd());

The result of this code example is also a list of all document types.

HTTP Multipart Call
Use a HTTP Multipart call to send fields containing a file to a DropTarget.

The call must consist of two parts: the JSON content, called data, and the file,
called file.

As there is no suitable method in the .NET framework to execute a HTTP Multipart
call, the source texte example below describes such a call:

 public static void WriteMultiParts(this WebRequest request,
IDictionary<string, object> parts)
 {
 string boundary = "---------------------------" +
DateTime.Now.Ticks.ToString("x");
 byte[] boundarybytes = Encoding.ASCII.GetBytes("\r\n--"
+ boundary + "\r\n");
 request.ContentType = "multipart/form-data; boundary=" +
boundary;
 request.Method = "POST";
 var buffer = new MemoryStream();
 foreach (var part in parts)
 {
 if (part.Value == null)
 {
 continue;
 }

 if (part.Value is FileInfo)
 {
 var file = (FileInfo)part.Value;
 if (!file.Exists)
 {
 throw new
FileNotFoundException(string.Format("The file='{0}' in part='{1}' is
not existing.", file.FullName, part.Key), file.FullName);
 }

 buffer.Write(boundarybytes, 0,
boundarybytes.Length);
 var contenttype =
Helper.GetMediaType(file.Extension);
 string header = string.Format("Content-
Disposition: form-data; name=\"{0}\"; filename=\"{1}\"\r\nContent-
Type: {2}\r\n\r\n", part.Key, file.FullName, contenttype);
 byte[] headerbytes =
Encoding.UTF8.GetBytes(header);
 buffer.Write(headerbytes, 0,
headerbytes.Length);

enaio® appconnector Integrating enaio® appconnector with .NET

enaio® Page 46

 var fileStream = new FileStream(file.FullName,
FileMode.Open, FileAccess.Read);
 var fileBuffer = new byte[4096];
 int bytesRead;
 while ((bytesRead = fileStream.Read(fileBuffer,
0, fileBuffer.Length)) != 0)
 {
 buffer.Write(fileBuffer, 0, bytesRead);
 }

 fileStream.Close();
 }
 else
 {
 buffer.Write(boundarybytes, 0,
boundarybytes.Length);
 string formitem = string.Format("Content-
Disposition: form-data; name=\"{0}\"\r\n\r\n{1}", part.Key,
part.Value);
 byte[] formitembytes =
Encoding.UTF8.GetBytes(formitem);
 buffer.Write(formitembytes, 0,
formitembytes.Length);
 }

 }

 byte[] trailer = Encoding.ASCII.GetBytes("\r\n--" +
boundary + "--\r\n");
 buffer.Write(trailer, 0, trailer.Length);
 buffer.Close();
 var requestStream = request.GetRequestStream();
 var data = buffer.ToArray();
 requestStream.Write(data, 0, data.Length);
 }

Authentication
Authentication is required if you wish to connect to enaio® appconnector.

The following authentication procedures are available in enaio® appconnector:

§ Negotiate

§ NTLM

§ Basic Authentication

To enable authentication, you must explicitly set the Credentials property for the
WebClient or the WebRequest object.

NTLM Authentication

To enable NTLM authentication, you must set the Credentials property to the
value CredentialCache.DefaultCredentials. The account of the currently
logged in user is then used as login information.

If you perform the call from within an ASP.NET application you must set the value
to CredentialCache.DefaultNetworkCredentials.

Further information is available in the MSDN documentation.

enaio® appconnector Integrating enaio® appconnector with .NET

enaio® Page 47

Basic Authentication

To enable basic authentication, you must set the value of the Credentials property
to the value NetworkCredential("user", "password").

If your system allows NTLM or Negotiate authentication, primarily this
authentication procedure will be used. Basic authentication may need to be
enforced (see 'Enforcing Specific Authentication Modes').

Enforcing Specific Authentication Modes
Various authentication methods are provided by the .NET Framework. You can use
the following example to list them all:

IEnumerator moduleEnumerator =
AuthenticationManager.RegisteredModules;
while (moduleEnumerator.MoveNext())
{
 Console.WriteLine(moduleEnumerator.Current.ToString());
}

All mechanisms apply, in descending order, according to their availability.

If you want to force a specific authentication mechanism for enaio® appconnector,
such as basic authentication, you must explicitly disable or remove all other
authentication mechanisms.

The following example demonstrates how to force basic authentication:

AuthenticationManager.Unregister("Negotiate");
AuthenticationManager.Unregister("NTLM");

Please note that this is a static call. If you want to change the authentication
mechanism to one that has been disabled before, you must activate it. This is done
via the Register method.

Handling JSON Responses Given by enaio®
appconnector
Results given by enaio® appconnector are available as JSON-formatted HTTP
contents. If you want to convert the JSON format to files readable by .NET, use one
of the following strategies:

§ Serialization with the 'DataContract' Attribute

§ Conversion to XML and Parsing with XPath

Serialization with the 'DataContract' Attribute
You can mark a .NET object with the DataContract attribute and set
corresponding DataMember properties in the class. These attributes are found in the
System.Runtime.Serialization namespace. In order to use this namespace, you
must add a reference to the System.Runtime.Serialization assembly in your
project from the .NET Framework. By using the DataContractJsonSerializer
class, you can then easily convert JSON-formatted results to .NET objects.

Further information is available in the MSDN documentation.

enaio® appconnector Integrating enaio® appconnector with .NET

enaio® Page 48

Conversion to XML and Parsing with XPath

An alternative way to make JSON formatted result data readable for your
application is to convert the data into XML format and then parse it or evaluate it
using XPath expressions.

The following example presents this procedure:

XmlDictionaryReader reader =
JsonReaderWriterFactory.CreateJsonReader(Encoding.Default.GetBytes(j
sonDocuments), XmlDictionaryReaderQuotas.Max);
XmlDocument xml = new XmlDocument();
xml.Load(reader);

Please note that this example is valid only if your project includes a reference to the
System.Runtime.Serialization assembly of the .NET Framework.

enaio® appconnector API Documentation

enaio® Page 49

API Documentation

General
OSRest provides a HTTP-based programming interface (API); all calls are stateless
and resource-oriented (REST). The API is used to bundle and simplify complex
function calls in enaio®. This includes mapping of all index data to a schema which
is useful for the specific application.

As HTTP is used for logging, correct URL encoding has to be ensured for all calls.

Authentication
OSRest supports default HTTP authentication with the following procedures:

§ NTLM

§ HTTP SPNEGO (Kerberos)

§ HTTP Basic Authentication (RFC2617)

With the Windows-based authentication procedures NTLM and SPNEGO,
authentication is delegated to the Windows operating system of the OSRest server.
The alternative HTTP basic authentication can either use Windows or internal
enaio® accounts. If required, OSRest can also be configured for a technical user to
run without authentication. The URL to the Admin interface can only be opened
with supervisor rights.

Services
OSRest provides different services:

§ DocumentService – Methods for searching index data

§ DocumentFileService – Methods for handling document files

§ NotificationService – Access to enaio® notifications

§ SessionService – Information on user sessions

§ ServiceInfoService – General information on the OSRest service

§ OSFileService – Anonymous service to create enaio®-internal link files

§ WorkflowService – Methods for starting and editing workflows

§ ObjDevService – Methods for working with object definitions in JSON
format

§ OrganizationService – Methods for users and groups, and also for e-mail
dispatch

§ IconService – Methods for retrieving catalog icons

All methods by default return JSON-encoded results.

http://en.wikipedia.org/wiki/JSON

enaio® appconnector API Documentation

enaio® Page 50

Error Messages

In case of an error, an HTTP status code not equal to 200 is returned. Application
errors basically have the status code 500 and additionally the JSON-encoded error
message.

{
 errormessage: "EcmException => The saved search with ID
564546754 was not found... ",
 id: 500
}

DocumentService

Next to the methods for searching and displaying index data, DocumentService also
offers features for marking favorites. These features are part of an especially
configurable user portfolio where the favorite enaio® objects are administered.

/osrest/api/documents

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a shorter version of the user object definition.

/osrest/api/documents/cabinets

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all cabinets visible to the user.

/osrest/api/documents/cabinets/[Cabinet]

§ Supported query methods: GET

§ Supported result formats: JSON, XML

The method returns all folders of a cabinet with the indicated name.

Optional parameters are:

§ metadata (string): File name of an alternative metadata mapping.

§ format (string): output format (json, xml). The default setting is json.

§ pagesize (integer): Maximum number of hits.

§ offset (integer): Hit offset for browsing the hits.

§ page (integer): The requested page for browsing the hits.

/osrest/api/documents/storedqueries

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all saved queries.

enaio® appconnector API Documentation

enaio® Page 51

/osrest/api/documents/storedqueries/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the result of the saved query with the specified ID.

Optional parameters are:

§ metadata (string): File name of an alternative metadata mapping.

§ pagesize (integer): The maximum number of hits for the call.

§ offset (integer): Hit offset for browsing the hits.

§ page (integer): The requested page for browsing the hits.

§ HTTP query parameter [object].[field] (e.g. email.sender=Peter)

.../osrest/api/documents/storedqueries/1234?Person.firstname=Gustav&
Person.lastname=Gans&metadata=MyMapping

/osrest/api/documents/tray

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns objects from the user tray.

Optional parameters are:

§ metadata (string): File name of an alternative metadata mapping.

/osrest/api/documents/[id]

§ Supported query methods: GET

§ Supported result formats: JSON, XML

The method returns index data of the object with the specified ID.

Optional parameters are:

§ metadata (string): File name of an alternative metadata mapping.

§ insertInfo (Boolean): Outputs all object types that can be added.

§ insertInfo_verbose (Boolean): Outputs all object types that can be added,
in greater detail.

§ locale (DE, EN, SP, FR, IT, NL, SV, HU, PL): Use one of these capital-
letter abbreviations to specify the output language.

§ lockinfo (Boolean): Information on the user who locked the file, as well
as the date and time that it was locked. Alternative values are
UNLOCKED, SELF, and EXTERNAL.

§ timestamps (Boolean): If set to 'true,' date, time, and date/time basic
parameters will be returned as Java timestamps.

§ format (string): output format (json, xml). The default setting is json.

enaio® appconnector API Documentation

enaio® Page 52

§ refresh (Boolean): Ignores cached data and retrieves the requested data
again.

§ DEPRECATED: verbose (Boolean): Outputs all field data (please use
documents/search/{Id})

Note on insertInfo parameters:

Normally only the mandatory fields of an object type would be returned. For
additional fields, an insertFields tag must be added to the schema file.

Optional fields in insertInfo:

<cabinet name="Customer">
 <object name="Document">
 <property name="title" field="Type"/>
 <property name="info" field="Description"/>
 <insertFields active="true"> <!-- true is default -->
 <property field="Description"/> <!-- Description is
not a mandatory field -->
 </insertFields>
 </object>
<cabinet/>

/osrest/api/documents/parents/[id]

§ Supported query methods: GET

§ Supported result formats: JSON, XML

The method returns a sorted, linear list of parent objects for an object with the
given ID. In addition to this list, it is also possible to display the search tree of a
location, which is particularly important when displaying multiple locations.

Optional parameters are:

§ metadata (string): File name of an alternative metadata mapping.

§ format (string): output format (json, xml). The default setting is json.

§ tree (Boolean): If 'true,' the location hierarchy of all of an object's
locations will be displayed as a tree. This parameter should always be
included and set to "true" – otherwise problems may be encountered
when dealing with objects that have multiple locations. The "simple"
linear output is still used for compatibility reasons.

Example output (the object ID here was 14007051):

{
 "pagesize": 500,
 "totalHits": 3,
 "more": false,
 "documents": [
 {
 "id": "4475",
 "type": "FOLDER",
 "fields": {
 "title": "Stoz Pumpenfabrik GmbH",
 "info": "User 0234-OS"

enaio® appconnector API Documentation

enaio® Page 53

 },
 "fav": false,
 "typeless": false
 },
 {
 "id": "14003866",
 "type": "REGISTER",
 "fields": {
 "title": "Previous stock",
 "info": "enaio introduction, 50 user, jukebox"
 },
 "fav": false,
 "typeless": false
 },
 {
 "id": "14007051",
 "type": "DOCUMENT",
 "fields": {
 "title": "Offer: STP-AN-1/13",
 "info": "ECM introduction..."
 },
 "fav": false,
 "typeless": false
 }
]
}

/osrest/api/documents/objectHierarchy/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method provides the directory structure of a folder or register up to a variable
depth.

Optional parameters are:

§ depth (int): Depth of the directory search tree.

§ hash (string): Hash value to be matched with the new, cumulatively
calculated hash value. If the same, no tree is returned.

Example output (id=4779;depth=10):

http://localhost:8080/osrest/api/documents/objectHierarchy/4779?dept
h=10
{
 "pagesize": -1,
 "totalHits": 1,
 "more": false,
 "documents": [
 {
 "id": "4779",
 "type": "FOLDER",
 "fields": {
 "title": "null",
 "info": "0"
 },
 "fav": false,
 "typeless": false,
 "hasPages": false,
 "lastmodified": "1295711263",
 "children": {
 "hash": "-1010811263",

enaio® appconnector API Documentation

enaio® Page 54

 "documents": [
 {
 "id": "14043114",
 "type": "REGISTER",
 "fields": {},
 "fav": false,
 "typeless": false,
 "hasPages": false,
 "lastmodified": "1263306900",
 "children": {
 "hash": "-363596267",
 "documents": [
 {
 "id": "4780",
 "type": "DOCUMENT",
 "fields": {},
 "fav": false,
 "typeless": false,
 "hasPages": false,
 "lastmodified": "1231420126"
 },
 {
 "id": "5770",
 "type": "DOCUMENT",
 "fields": {},
 "fav": false,
 "typeless": false,
 "hasPages": false,
 "lastmodified": "1231420126"
 }
]
 }
 }
]
 }
 }
],
 "hash": "840007432"
}

/osrest/api/documents/variants/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns all variants for the object with the given ID. The variant tree is
displayed as follows:

{
 "active": false,
 "id": 14007049,
 "parentId": 0,
 "version": "Original",
 "children": [
 {
 "active": true,
 "id": 14007051,
 "parentId": 14007049,
 "version": "1.0.0",
 "children": [
 {
 "active": false,

enaio® appconnector API Documentation

enaio® Page 55

 "id": 14041838,
 "parentId": 14007051,
 "version": "1.1.0",
 "children": []
 }
]
 },
 {
 "active": false,
 "id": 14119107,
 "parentId": 14007051,
 "version": "2.0.0",
 "children": []
 }
]
}

/osrest/api/documents/explore/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the contents of a folder/register with the specified ID.

Optional parameters are:

§ metadata (string): File name of an alternative metadata mapping.

§ format (string): output format (json, xml). The default setting is json.

§ pagesize (integer): Maximum number of hits.

§ offset (integer): Hit offset for browsing the hits.

§ insertInfo (Boolean): Outputs all object types that can be added (see note
on insertInfo parameters)

§ page (integer): The requested page for browsing the hits.

/osrest/api/documents/insert/[locationId]

§ Supported query methods: POST

§ Supported output formats: JSON

The query has to have the content type multipart/form-data (RFC 1876).

Creates an object in the folder or register with the specified location ID. If you are
creating a folder, simply leave the location ID unspecified.

The json schema is the same as that returned with explore + the 'insertInfo'
parameter. The json schema is the same as that returned with explore + 'insertInfo'
parameters.

The 'type' attribute must be included in the field for radio buttons ("type":
"RADIO").

Variants: If no index data are transferred in the request, the index data will be taken
from the parent document.

enaio® appconnector API Documentation

enaio® Page 56

Optional parameters are:

§ setvariantactive=true: Sets the new variant as the active variant, e.g.
http://demo.optimal-
systems.org/osrest/api/documents/insert/14133432?setvariantactive=true

§ archivable=true: Sets the document as archivable.

§ islink=true: Creates another location for the document.

{
 "objectTypeId": "262159",
 "mainTypeId": "1",
 "fields": {
 "Project type": {
 "internalName": "i_projecttype",
 "value": "PUA - General"
 },
 "Type": {
 "value": "Technology"
 },
 "3": {
 "internalName": "i_visiblefor",
 "value": "DEMO(g)"
 }
 }
}

/osrest/api/documents/update/[id]

§ Supported query methods: POST

§ Supported output formats: JSON

The method modifies the object with the specified ID. It is used similarly to the
documents/insert method – the ObjectTypeId can optionally be included to
increase the speed of the call. Furthermore, only explicitly specified fields can be
modified in enaio®. The call must have the content type multipart/form-data (RFC
1867).

Optional parameters are:

§ replacefiles (Boolean): Replaces the file of a document if set to 'true.'

/osrest/api/documents/search

§ Supported query methods: POST

§ Supported output formats: JSON

Optional parameters are:

§ pagesize (integer): Size of the result set. This can be used for paging.

§ offset (integer): Detailed offset, independent from the pagesize.

http://demo.optimal-systems.org/osrest/api/documents/insert/14133432?setvariantactive=true
http://demo.optimal-systems.org/osrest/api/documents/insert/14133432?setvariantactive=true
http://www.faqs.org/rfcs/rfc1867.html
http://www.faqs.org/rfcs/rfc1867.html

enaio® appconnector API Documentation

enaio® Page 57

§ page (integer): The page to be displayed during paging. Overwrites the
offset parameter. Offset is calculated as page * pagesize.

§ maxhits (integer): Maximum number of hits to be loaded. This can be
more than the number specified in pagesize. This allows caching to be
regulated so that subsequent pages can be returned more quickly.

§ rights (Boolean): The object rights for every object should also be output
in the hit list.

Use this method to search for an object using field values and/or basic parameters.
The search can be narrowed (combined search) by specifying more object types.
Object types are specified with either the internal name, the cabinet name, the
OSID, or the object type ID. Fields are specified as field objects in "fields." They can
be given the "internalName" attribute, otherwise the object identifier will be taken
as the simple name. The basic parameters can also be negated by setting the negate
key to true. The basic parameters can be found in the table further below. Areas
can be queried with all numerical, date, time, and date/time values.

The following table lists all operators:

Operator Description

>Value All values greater than Value.

>=Value All values greater than or equal to Value.

!=Value All values not equal to Value.

<Value All values smaller than Value.

<=Value All values smaller than or equal to Value.

Value1-Value2 All values within the range from Value1 to Value2.

The hit list output includes all index data and metadata, ensuring more overhead
than other search methods available in this API.

Note: If simple names are used, the cabinet name must also be specified, as the
simple name is not unique across the system.

{
 "query": {
 "objectTypeId": "262220",
 "osid": "14131857",
 "cabinet":"i_SeeleGersthofen",
 "name":"i_Documents",
 "fields": {
 "Contract basis": {
 "value": "1"
 },
 "Create archived receipt": {
 "value": "1"
 }
 },
 "baseparams": {

enaio® appconnector API Documentation

enaio® Page 58

 "Creator": {
 "value": "DEMO"
 },
 "Created": {
 "value": "1028114820000"
 },
 "Modifier": {
 "value": "DEMO",
 "negate": "true"
 }
 }
 },
 "additionalQueries": [
 {
 "objectTypeId": "54",
 "fields": {
 "Project type": {
 "value": "PUA - General",
 "internalName": "i_projecttype"
 },
 "Project no.": {
 "value": "123",
 "internalName": "i_projectno."
 },
 "Project name": {
 "value": "test value",
 "internalName": "i_projectname"
 },
 "Visible for": {
 "value": "DEMO(g)",
 "internalName": "i_visiblefor"
 }
 },
 "baseparams": {
 "Creator": {
 "value": "DEMO"
 },
 "Created": {
 "value": "1028114820000"
 },
 "Modifier": {
 "value": "DEMO",
 "negate": "true"
 }
 }
 }
]
}

The results list can be configured with the "result_config" parameter. The following
values are available:

Parameters Type Description Default

pagesize Integer Number of hits – see the URI
parameter of the same name. This

null

enaio® appconnector API Documentation

enaio® Page 59

parameter is prioritized over the URI
parameter.

offset Integer Paging offset – see the URI parameter
of the same name. This parameter is
prioritized over the URI parameter.

0

maxhits Integer Maximum number of hits – see the
URI parameter of the same name. This
parameter is prioritized over the URI
parameter.

500

deny_empty Boolean If 'true,' null field values will NOT be
displayed in the results list.

false

normalize_values Boolean If 'true,' Date, Time, and DateTime
fields are converted to timestamps
(with milliseconds), otherwise the
output will use the respective server
format.

false

fieldsschema Object Specifies the order of hits. null

Field schema:

Parameters Type Description Default

internalName String Identifier of the field null

displayName String Identifier of the field null

objectTypeId String Identifier of the field null

dbName String Identifier of the field null

sort_order
\[ASC,
DESC\]

Ascending or descending order ASC

sort_pos Integer Position in the sort order
Position within the
field schema

Example result configuration

{
 "query": {
 "cabinet": "Customer",
 "name": "Customer",
 "result_config": {
 "fieldsschema": [
 {
 "dbName": "id",
 "sort_position": 0,
 "sort_order": "DESC"
 }
],

enaio® appconnector API Documentation

enaio® Page 60

 "pagesize": 100,
 "offset": 100,
 "maxhits": 500,
 "deny_empty": true,
 "normalize_values": false
 }
 }
}

A full text search can also be integrated. To do this, simply fill out the "vtx_query"
attribute for any object.

Combined Search and Full Text Search

{
 "query": {
 "objectTypeId": "3",
 "vtx_query": "Olaf",
 "fields": {
 "Sector": {
 "value": "Industry"
 },
 "Status": {
 "value": "2"
 }
 }
 },
 "additionalExamples": [
 {
 "objectTypeId": "131079",
 "vtx_query": "Björn"
 }
]
}

The following basic parameters from the server API manual are currently
supported. Unset keys are irrelevant in terms of value:

Basic
parameters

Values Explanation

Creator User name1 A list of user names of ECM users.
The user names are queried using OR
logic. If negated, however, the user
names will be linked with AND.

Created Java timestamp1

Modifier User name1 A list of user names of ECM users.
The user names are queried using OR
logic. If negated, however, the user
names will be linked with AND.

Modified Java timestamp1

Owner User name1 A list of user names of ECM users.
The user names are queried using OR

enaio® appconnector API Documentation

enaio® Page 61

logic. If negated, however, the user
names will be linked with AND.

ArchiveState ARCHIVED|ARCHI
VABLE|NOT_ARCH
IVABLE|NO_PAGES
|REFERENCE

A list of these values. They will then
be linked with OR.

Archivist User name1 A list of user names of ECM users.
The user names are queried using OR
logic. If negated, however, the user
names will be linked with AND.

ArchiveDate Java timestamp1

Locked User name1 A list of user names of ECM users.
The user names are queried using OR
logic. A list entry can also contain an
empty string for 'UNLOCKED' or a *
for 'blocked by somebody.' If
negated, however, the user names will
be linked with AND.

HasVariants true

Version Integer1

RetentionDate Java timestamp1

RetentionPlanned
Date

Java timestamp1

Left Integer1

SystemID Integer1

ForeignID Integer1

DocumentPageCo
unt

Integer1

Registers true | false

1 Value can be negated by setting a "negate" key.

Note: Only use keys that begin with a lowercase letter! Keys that begin with
uppercase letters are deprecated.

The information on rights, which can be additionally requested via the GET
parameter rights=true, indicates the following:

objModify The user is allowed to edit the document files.

objDelete The user is allowed to delete the object.

objExport The user is allowed to open and/or export the object.

enaio® appconnector API Documentation

enaio® Page 62

indexModify The user is allowed to change the object's index data.

/osrest/api/documents/search/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

Use this method to search for an object with the specified OSID. The output, with
all index data and metadata, will have the same structure here as the output of the
POST search method.

Optional parameters are:

§ refresh (Boolean): The cache will be emptied and the results will be
requested from the server again.

§ locale (DE, EN, SP, FR, IT, NL, SV, HU, PL): Use one of these capital-
letter abbreviations to specify the output language.

§ lockinfo (Boolean): Information on the user who locked the file, as well
as the date and time that it was locked. Alternative values are
UNLOCKED, SELF, and EXTERNAL.

§ timestamps (Boolean): If set to 'true,' date, time, and date/time basic
parameters will be returned as Java timestamps.

/osrest/api/documents/vtx?query=[search term]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the result of a full text search with the specified search terms.

Optional parameters are:

§ metadata (string): File name of an alternative metadata mapping.

.../osrest/api/documents/vtx?query=My%20searchterms

/osrest/api/documents/vtx

§ Supported query methods: POST

§ Supported result formats: JSON

§ Supported input formats: JSON

The method provides the results of a full text search with the given search term.

Required parameters are:

§ query

Optional parameters are:

enaio® appconnector API Documentation

enaio® Page 63

§ facets (Map<String, List<String>>): multiple values are permissible per
facet type

§ maxHits (integer): Maximum number of hits

§ objectIds (integer[]): List of object IDs

§ objectTypeIds (Integer[]): List of object type IDs

Input JSON:

{
 "query": "demo*",
 "maxHits": 50,
 "facets": {
 "creator": [
 "demo"
],
 "objtype": [
 "262144",
 "131114",
 "393225"
]
 }
}

Output JSON:

{
 "facets": {
 "creator": [
 {
 "value": "demo",
 "hits": 26
 }
],
 "objtype": [
 {
 "value": "262144",
 "hits": 15
 },
 {
 "value": "131114",
 "hits": 5
 },
 {
 "value": "393225",
 "hits": 2
 }
]
},
 "facetCount": 8,
 "documentResult": {
 "totalHits": 20,
 "more": false,
 "documents": [
 {
 "id": "14121247",
 "type": "DOCUMENT",

enaio® appconnector API Documentation

enaio® Page 64

 "fields": {
 "title": "Documents",
 "info": "PM New Version enaio (draft SJ)"
 },
 "fav": false,
 "typeless": false,
 "pages": 1,
 "lastmodified": "1393589826000",
 "preview": "Documents 20050321 PM New Version enaio (draft SJ)
DEMO DEMO 20140228 1.0.0 DEMO
DEMO"
 }, {...}
]
 }
}

/osrest/api/documents/vtx/autocomplete/[term]

§ Supported query methods: GET

§ Supported result formats: JSON

The method gives up to five suggestions for auto-completing the provided term.

/osrest/api/documents/baseparams/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the enaio® properties for the given object ID.

/osrest/api/documents/history/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the object history for the given object ID.

Example of output:

[
 {
 "time": 1392211328000,
 "action": 7,
 "actionname": "Document output",
 "description": "The document was read by the user, printed,
or otherwise output. No changes were made.",
 "username": "ROOT",
 "userdisplayname": "",
 "info": "The document was opened in read-only mode."
 },
 {
 "time": 1392211327000,
 "action": 31,
 "actionname": "Object info",
 "description": "Log entry from the business model.",
 "username": "DEMO",
 "userdisplayname": "John Doe",
 "info": "Document preview was retrieved."
 },

enaio® appconnector API Documentation

enaio® Page 65

 {
 "time": 1203583524000,
 "action": 7,
 "actionname": "Document output",
 "description": "The document was read by the user, printed,
or otherwise output. No changes were made.",
 "username": "CONTRACT",
 "userdisplayname": "",
 "info": "Document downloaded for editing"
 },
 {
 "time": 1203583489000,
 "action": 7,
 "actionname": "Document output",
 "description": "The document was read by the user, printed,
or otherwise output. No changes were made.",
 "username": "CONTRACT",
 "userdisplayname": "",
 "info": "Document downloaded in read-only mode"
 }
]

/osrest/api/documents/notes/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

Parameter:

§ id (int): Object ID

The method returns notes for the given object ID.

Example of output:

[
 {
 "id": 14121121,
 "creator": {
 "id": 22,
 "name": DEMO",
 ... }
 "modifier": {
 "id": 77,
 "name": MEIER",
 ... }
 "color": "2",
 "colorName": "YELLOW"
 "text": "This is an ideal test document for notes.",
 "date": 1465909598000,
 "creationDate": 1392290415000
 },
 ...
]

/osrest/api/documents/notes/[id]

§ Supported query methods: POST

§ Supported input formats: JSON

§ Supported result formats: JSON

enaio® appconnector API Documentation

enaio® Page 66

Parameter:

§ id (int): Object ID

The method creates a new note for the given object ID. As a result, the complete list
of all notes is returned (like with GET).

Input data example:

{
 "color": "3",
 "text": "Note via REST API"
}

/osrest/api/documents/notes/[id]/[noteId]

§ Supported query methods: DELETE

§ Supported result formats: JSON

The method deletes a note with the provided object ID and note ID. As a result, the
complete list of all notes is returned (like with GET).

/osrest/api/documents/notes/remove/[id]/[noteId]

§ Supported query methods: DELETE

§ Supported result formats: JSON

Parameter:

§ id (int): Object ID

§ noteId (int): Note ID

The method deletes a note with the provided object ID and note ID. As a result, the
complete list of all notes is returned (like with GET).

/osrest/api/documents/notes/update/[id]

§ Supported query methods: POST

§ Supported input formats: JSON

§ Supported result formats: JSON

The method applies changes to the passed note on the object with the passed object
ID. As a result, the complete list of all notes is returned (like with GET).

Parameter:

§ id (int): Object ID

Input data example

{
 "id": "17",
 "color": "3",

enaio® appconnector API Documentation

enaio® Page 67

 "text": "Note via REST API"
}

/osrest/api/documents/portfolios

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns all portfolios visible to the user.

Optional parameters are:

§ creator (string): Narrows the search to portfolios created by a specific
user.

§ recipient (string): Narrows the search to portfolios created for a specific
user.

§ subject (string): Narrows the search to portfolios with a specified subject.

/osrest/api/documents/portfolio/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns the content of a portfolio.

Optional parameters are:

§ pagesize (integer): Maximum number of hits.

§ offset (integer): Hit offset for browsing the hits.

§ page (integer): The requested page for browsing the hits.

/osrest/api/documents/portfolio/{id}/add/{docid}

§ Supported query methods: GET

§ Supported result formats: JSON

The method adds a document to a portfolio.

/osrest/api/documents/portfolio/{id}/remove/{docid}

§ Supported query methods: GET

§ Supported result formats: JSON

The method removes a document from a portfolio.

/osrest/api/documents/favorites

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all objects of the favorites portfolio.

enaio® appconnector API Documentation

enaio® Page 68

/osrest/api/documents/favorites/count

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the number of all objects of the favorites portfolio.

/osrest/api/documents/favorites/add/[id]

§ Supported query methods: POST

§ Supported result formats: JSON

Inserts the object with the specified enaio® ID of the favorites portfolio.

/osrest/api/documents/favorites/delete/[id]

§ Supported query methods: POST

§ Supported result formats: JSON

Deletes the object with the specified enaio® ID from the favorite portfolio.

/osrest/api/documents/raw/[id]

Deprecated! Use /osrest/api/documents/search/[id] instead.

§ Supported query methods: GET

§ Supported result formats: XML, HTML, JSON

The method returns object information in the internal enaio® XML format (see
server API documentation). The output can also be in HTML format. The output
serves as the basis for enaio® detailsviewer.

Optional parameters are:

§ format (string): Output format (XML, JSON).

§ locale (string): The output language can be set by specifying an ISO
language code (de, en, etc.).

/osrest/api/documents/annotations/{objectId}

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns all annotations in the document associated with an ECM
object.

/osrest/api/documents/annotations

§ Supported query methods: POST

§ Supported result formats: JSON

enaio® appconnector API Documentation

enaio® Page 69

§ Supported input formats: JSON

The method adds an annotation to the document associated with the ECM object,
or updates an existing annotation. The number of the page containing the
annotation is zero-based, i.e. the first page is 0.

The pageXStart, pageYStart, and corresponding End values are per mil values
(percentage values times 10). Currently, the only supported type is ANNOT, which
stands for text annotations. More annotation types will be added soon.

The backgroundColor is RGBA. Data and text are currently identical. In a further
development stage, data will also be able to contain binary Base64 data, while text
must contain searchable text.

Input JSON

{
 "id": 0,
 "objectId": 123,
 "page": 0,
 "pageXStart": 780.0,
 "pageYStart": 542.1,
 "pageXEnd": 0,
 "pageYEnd": 0,
 "type": "ANNOT",
 "backgroundColor": "FF000000",
 "data": "I am a text annotation",
 "text": "I am a text annotation"
 }

/osrest/api/documents/annotations/delete/{objectId}

§ Supported query methods: GET

§ Supported result formats: JSON

This method removes one or all annotations from the document associated with an
ECM object.

Optional parameters are:

§ id (integer): The ID of the annotation to be removed from the
document. If no ID is specified, all annotations in the document will be
deleted.

/osrest/api/documents/annotations/pdf/{objectId}

§ Supported query methods: POST

§ Supported result formats: JSON

This method returns the PDF version of the document associated with the ECM
object, including annotations. The annotations will be embedded in the PDF.

enaio® appconnector API Documentation

enaio® Page 70

DocumentFileService

/osrest/api/documentfiles/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns detailed information on the object with the specified ID.

The result contains the following information:

§ fav: The document has been marked as favorite by the user.

§ typeless: The document does not have a type.

§ contentviewerUrl: URL to open the object in the combined view of
OS_contentviewer.

§ contentviewerDocumentUrl: URL to open the object in the document
view of OS_contentviewer.

§ contentviewerIndexdataUrl: URL to open the object in the index data
view of OS_contentviewer.

§ oswebLinkUrl: URL to open the object in enaio® webclient.

§ files: List of files associated with the document.

{
 fav: false
 typeless: false
 contentviewerUrl: "https://..."
 contentviewerDocumentUrl: "https://..."
 contentviewerIndexdataUrl: "https://..."
 oswebLinkUrl: "https://..."
 pageCount: 1
 -files: [
 "1.doc"
]
}

/osrest/api/documentfiles/[id]/[page]

§ Supported query methods: GET

§ Supported result formats: application/octet-stream

The method returns a certain page for the object with the indicated page name or
page number (see /osrest/api/documentfiles/[id]). The value 1 can also be passed
for one-page documents.

/osrest/api/documentfiles/[id]/pdf

§ Supported query methods: GET

§ Supported result formats: application/octet-stream

The method converts the documents of the object with the specified ID to PDF.

/osrest/api/documentfiles/[id]/zip

§ Supported query methods: GET

enaio® appconnector API Documentation

enaio® Page 71

§ Supported result formats: application/octet-stream

The method summarizes documents of the object with the specified ID in a ZIP file

/osrest/api/documentfiles/[id]/osfile

§ Supported query methods: GET

§ Supported result formats: application/octet-stream

The method creates an internal enaio® link file for the object with the specified ID.

/osrest/api/documentfiles/pdf

§ Supported query methods: POST

§ Supported result formats: application/pdf

Optional parameters are:

§ whitepage (Boolean): If 'true,' a blank page will be inserted as a separator
between each document in the merged document.

§ forceprint (Boolean): If 'true,' application code will be inserted into the
PDF that will cause the PDF reader to open the print dialog.

The method merges the PDF versions of multiple original documents, specified via
ID in the POST body, into a single PDF document, which is then returned. The
GET parameter forceprint can be used to add application code to the target PDF
document that will cause the PDF reader to open the print dialog directly after
opening the document. A maximum of 200 documents can be merged into one
PDF. If one or more documents could not be processed, a PDF will not be returned
as a result. Instead, a JSON object will be returned containing the failed object IDs.

{
 "pdfname" : "merge.pdf",
 "ids" : [
 14024030,
 14024032,
]
}

/osrest/api/documentfiles/zip

§ Supported query methods: POST

§ Supported result formats: application/zip

The method packs the original documents, specified via ID in the POST body, into
a ZIP archive, which is then returned. Optionally, the name of each listed
document in the ZIP archive can be specified in addition to the ID. As well as the
documents to be compressed, the archivename tag must be used to specify the file
name of the returned ZIP archive. A ZIP archive can contain up to 200 files. If one
or more documents could not be processed, a ZIP will not be returned as a result.
Instead, a JSON object will be returned containing the failed object IDs.

{
 "archivename": "myArchive.zip",

enaio® appconnector API Documentation

enaio® Page 72

 "ids" : [
 {
 "id": 14024030,
 "name": "file one"
 },
 {
 "id": 14024032,
 "name": "file two"
 }]
}

/osrest/api/documentfiles/addtotray

§ Supported query methods: POST

§ Supported result formats: JSON

A file can be uploaded to the user tray with a multipart POST query (RFC 1867).

The file must contain the content-disposition form-data and additionally the
filename attribute with the name of the file.

content-disposition: form-data; name="imagefile";
filename="image.jpg"

/osrest/api/documentfiles/move/[id]?targetLocation=[id of folder or
register]&sourceLocation=[id of current folder/register]

§ Supported query methods: POST

The method moves the object to the location specified in "targetLocation" and
therefore must be provided. If successful, "OK" will be returned, otherwise an
exception will occur. If the object to be moved is a folder or register, "recursive" can
be used to specify whether its contents should also be moved.

Optional parameters are:

§ recursive (Boolean): If the object is a folder or register, setting this
parameter to 'true' will specify that its contents should also be moved.

§ sourceLocation (integer): Specifies the current location (direct parent
object) of the object. Only required if the document has multiple
locations.

/osrest/api/documentfiles/droptargets

§ Supported query methods: GET

§ Supported result formats: JSON

The returned list contains the names of available droptargets.

Variables and data that are specified in a description area are also entered (see
'<description>').

http://www.faqs.org/rfcs/rfc1867.html

enaio® appconnector API Documentation

enaio® Page 73

If between a variable and a field in enaio® there is a 1:1 mapping, the maximum
field length for the enaio® field, the mandatory field status, and all possible catalog
data will be returned. If no unambiguous mapping is possible (e.g. if variables are
used several times), only the variable name will be returned.

{
 demo: {
 regtype: {
 catalog: [
 "Invoices,",
 "Previous stock",
 "Miscellaneous",
 "Support info",
 "Project",
 "Milestone",
 "Correspondence",
 "Marketing",
]
 required: true,
 size: "15"
 },
 dkreditor: { },
 dstatus: { },
 fname: {
 required: true,
 size: "80"
 },
 gposition": {
 columns: [
 "Item number"
 "Name",
 "Price per unit",
 "Quantity",
 "Item subtotal"
]
 type: "GRID",
 }
 }
}

DropTarget scripts for specific users can be filed in enaio® appconnector. The
scripts must be filed under the droptargets directory in the enaio® appconnector
configuration, in a directory called user/<username>. For example, the directory
structure for the user demo would look like this:

droptargets/users/demo

/osrest/api/documentfiles/droptargets/[targetname]

§ Supported query methods: POST

§ Supported result formats: JSON

The method passes a file to a droptarget. The query must have the content type
multipart/form-data (RFC 1867). The multipart query has to consist of two
parts:

§ Variable data: This part must contain the content-disposition form-data
and additionally the name attribute with the name data.

http://www.faqs.org/rfcs/rfc1867.html

enaio® appconnector API Documentation

enaio® Page 74

content-disposition: form-data; name="data"

§ File upload: This part must have the content disposition form-data and
additionally the filename attribute with the file name. The name
attribute is not important here.

content-disposition: form-data; name="imagefile";
filename="image.jpg"

Filling tables (type: GRID) requires you to pass the single lines with their column
headers as a parameter. Empty columns can be ignored:

{
 fname:"0008-OS",
 regtype:"Project",
 dkreditor:"indat",
 gposition:{
 row_1:{
 ItemNumber:123,
 Name:"Cat",
 PricePerUnit:1000
 },
 row_2:{
 ItemNumber:666,
 Name:"Mouse",
 PricePerUnit:12,
 Quantity:55
 }
 }
}

Notation 2.0:

"position":[{"Type":"Item","Number":"1"},{..}]

The method returns the enaio® object ID of the created document. However, the
exact return value depends on the setting in the DropTarget script itself.

/osrest/api/documentfiles/delete

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to delete multiple objects from the archive. If successful, the
method returns the string "true." The POST body of the query consists of a JSON
array.

{
 "ids": [14118033,14117993,14117994,]
}

The IDs entered will then be returned in two arrays:

{
 "success": [
 14118033,
 14117993
],
 "failed": [
 14117994
]
}

enaio® appconnector API Documentation

enaio® Page 75

/osrest/api/documentfiles/delete/[id]

§ Supported query methods: GET, DELETE

§ Supported result formats: JSON

Use this method to delete a document from the archive. If successful, the method
returns the string 'true'.

/osrest/api/documentfiles/update/[id]

§ Supported query methods: POST

§ Supported result formats: -

Use this method to edit a document file. The query must have the content type
multipart/form-data (RFC 1867). Multipart query structure:

§ File upload: This part must have the content disposition form-data and
additionally the filename attribute with the file name. The name
attribute is not important here.

content-disposition: form-data; name="imagefile";
filename="image.jpg"

Optional parameters are:

§ maintype (int): You can force a specific main type (see server API
documentation).

§ page (int): For multi-page document types (images), the transferred page
can be specified here to avoid transferring all pages.

/osrest/api/documentfiles/processmetadata/[id][?override=[true|fals
e]&preview=[true|false]]

§ Supported query methods: GET

§ Supported result formats: JSON

The method can be used to supplement a document (ID) with data from the
ExtractionService. The mapping defines which data are mapped.

Optional parameters are:

§ override (bool): Specifies whether index fields should be filled with data
even if they are not empty (optional). This option can also be set as a
dedicated setting in the mapping.

§ preview (bool): If true, instead of updating the document, the mapping
will be returned as a "suggestion" formatted as JSON.

/osrest/api/documentfiles/processmetadata/[objectTypeId]

§ Supported query methods: POST

§ Supported result formats: JSON

enaio® appconnector API Documentation

enaio® Page 76

The method can be used to supplement a document (ID) with data from the
ExtractionService, and the document does not have to exist in enaio®. The file will
be sent as a multipart POST request. The object type that the document is saved
with is specified in the URL. An ExtractionMapping of the file is returned as JSON
along with the mapping of the object type.

/osrest/api/documentfiles/checkout/{id}

§ Supported query methods: GET

§ Supported result formats: JSON

Required parameters are:

§ objectTypeId (int): ObjectTypeId of the object

The method sets a document (ID) to the status 'checked out' for the user who is
logged in via enaio® appconnector. If successful, HTTP 204 (No Content) will be
returned. If the document has already been checked out by another user, that user's
data will be returned in JSON format, along with an HTTP 409 (Conflict) status.

/osrest/api/documentfiles/checkout/undo/{id}

§ Supported query methods: GET

§ Supported result formats: JSON

Required parameters are:

§ objectTypeId (int): ObjectTypeId of the object

The method sets a document (ID) that was checked out by the user who is logged in
via enaio® appconnector to the status 'not checked out.' If successful, HTTP 204
(No Content) will be returned. If the document was checked out by another user,
that user's data will be returned in JSON format, along with an HTTP 409
(Conflict) status.

NotificationService

/osrest/api/notifications

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all notifications (subscriptions and follow-ups).

Optional parameters are:

§ showown (Boolean): Specifies whether self-addressed notifications are
displayed (default: false).

§ starttime (int - Unix timestamp): Time from which notifications are to
be displayed (default: no restriction).

enaio® appconnector API Documentation

enaio® Page 77

§ metadata (string): File name of an alternative metadata mapping.

§ reload (Boolean): If true, caching will be ignored and the notifications
will be reloaded from the server. The cache will be updated.

§ user (string): Name of a user for whom the notifications should be
displayed. Assumes that the IP of the querying user has been entered in
osrest.properties.

§ verbose (Boolean): An extended generic metadata model will be used
additionally.

§ clienttype (string): Specifies the client type workflow for which
notifications are received ("web," "mobile," "desktop," optionally with a
specific language, e.g. "web_de," "web_en," "web_fr").

To use this feature for workflow notifications as well, workflow use has to be
enabled in the configuration.

/osrest/api/notifications/revisits

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all follow-up notifications.

Optional parameters are:

§ showown (Boolean): Specifies whether self-addressed notifications are
displayed (default: false).

§ starttime (int - Unix timestamp): Point in time from which notifications
are to be displayed (default: no restriction).

§ metadata (string): File name of an alternative metadata mapping.

§ verbose (Boolean): An extended generic metadata model will be used
additionally.

/osrest/api/notifications/subscriptions

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all notifications for subscribed objects.

Optional parameters are:

§ showown (Boolean): Specifies whether self-addressed notifications are
displayed (default: false).

§ starttime (int - Unix timestamp): Point in time from which notifications
are to be displayed (default: no restriction).

§ metadata (string): File name of an alternative metadata mapping.

enaio® appconnector API Documentation

enaio® Page 78

§ verbose (Boolean): An extended generic metadata model will be used
additionally.

/osrest/api/notifications/revisits/remove/{id}/{eventDate}

§ Supported query methods: GET

This method deletes the notification associated with a follow-up. To do so, both the
object ID {id} and the date {eventDate} must be specified (both fields of a
notification). If successful, the function returns the value 0.

Required parameters:

§ id: ID of the object for which the notification will be removed.

§ eventDate: Date of the notification

/osrest/api/notifications/remove

§ Supported query methods: GET

Required parameters:

§ id: ID of the object for which the notification will be removed.

§ eventDate: Date of the notification

§ (optional – speeds up processing) notificationType: Type of the
notification (REVISIT/SUBSCRIPTION)

/osrest/api/notifications/revisits/markread/{id}/{eventDate}

§ Supported query methods: GET

§ Supported result formats: JSON

The method sets the status of a follow-up to Read. To do so, both the object ID {id}
and the date {eventDate} must be specified (both fields of a notification). If
successful, the function returns the value 0.

/osrest/api/notifications/revisits/markread

§ Supported query methods: POST

§ Supported result formats: JSON

The method sets the status of follow-up notifications to Read or Unread. To do so,
both the object ID {id} and the date {eventDate} must be specified in each case
(both fields of a notification). If {reset} is used as a parameter, the notifications will
be marked as unread.

If an error occurs during the "Mark as read" process, the method will return a list of
notifications that could not be marked as read or unread.

enaio® appconnector API Documentation

enaio® Page 79

Required parameters:

§ id: ID of the object

§ eventDate: Date of the notification

§ senderId: The trigger for the follow-up (optional)

Optional parameters:

§ reset: Mark notification as unread

POST example

[
 {
 "id": 4999,
 "eventDate": 1459760812000,
 "senderId": 8991
 },
 ...
]

/osrest/api/notifications/revisits/process/{id}/{eventDate}

§ Supported query methods: GET

The method sets the status of a notification follow-up to Processed or Unprocessed.
To do so, both the object ID {id} and the date {eventDate} must be specified (both
fields of a notification). If {open} is used as a parameter, the notification will be
marked as Unprocessed.

If successful, the function returns the value 0.

Required parameters:

§ id: ID of the object

§ eventDate: Date of the notification

Optional parameters:

§ reset: Mark notification as unprocessed

§ password: Base64-encoded password for your own account, if the follow-
up requires password validation. If a password is required but not
provided, the action will fail.

/osrest/api/notifications/revisits/process

§ Supported query methods: POST

§ Supported result formats: JSON

The method sets the status of follow-up notifications to Processed or Unprocessed.
To do so, both the object ID {id} and the date {eventDate} must be specified in each
case (both fields of a notification). If {reset} is used as a parameter, the notifications
will be marked as Unprocessed. If an error occurs during the "Mark as processed"

enaio® appconnector API Documentation

enaio® Page 80

process, the method will return a list of notifications that could not be marked as
processed or unprocessed.

Required parameters:

§ id: ID of the object

§ eventDate: Date of the notification

§ senderId: The trigger for the follow-up (optional)

Optional parameters:

§ reset: Mark notification as unprocessed

/osrest/api/notifications/subscriptions/remove/{id}/{eventDate}

§ Supported query methods: GET

This method deletes the notification associated with a subscription. To do so, both
the object ID {id} and the date {eventDate} must be specified (both fields of a
notification). If successful, the function returns the value 0.

Required parameters:

§ id: ID of the object for which the notification will be removed.

§ eventDate: Date of the notification

Optional parameters:

§ senderId: The trigger for the follow-up. If this is not specified or 0, all
notifications for the user of the object will be deleted.

/osrest/api/notifications/subscriptions/remove

§ Supported query methods: POST

§ Supported result formats: JSON

This method deletes multiple notifications regarding subscriptions. To do so, both
the object ID {id} and the date {eventDate} must be specified in each case.
If an error occurs during deletion, the method will return a list of notifications that
could not be deleted.

Required parameters:

§ id: ID of the object for which the notification will be removed.

§ eventDate: Date of the notification

§ senderId: The trigger for the follow-up. If this is not specified or 0, all
notifications for the user of the object will be deleted.

POST example

[
 {
 "id": 4999,
 "eventDate": 1459760812000,

enaio® appconnector API Documentation

enaio® Page 81

 "senderId": 8991
 },
 ...
]

/osrest/api/notifications/subscriptions/markread/{id}/{eventDate}

§ Supported query methods: GET

The method sets the status of a subscription notification to Read or Unread. To do
so, both the object ID {id} and the date {eventDate} must be specified (both fields
of a notification). If {reset} is used as a parameter, the notification will be marked as
unread.

If successful, the function returns the value 0.

Required parameters:

§ id: ID of the object

§ eventDate: Date of the notification

Optional parameters:

§ reset: Mark notification as unread

/osrest/api/notifications/subscriptions/markread

§ Supported query methods: POST

§ Supported result formats: JSON

The method sets the status of subscription notifications to Read or Unread. To do
so, both the object ID {id} and the date {eventDate} must be specified in each case
(both fields of a notification). If {reset} is used as a parameter, the notification will
be marked as unread. If an error occurs during the "Mark as read" process, the
method will return a list of notifications that could not be marked as read or
unread.

Required parameters:

§ id: ID of the object

§ eventDate: Date of the notification

§ senderId: The trigger for the follow-up (optional)

Optional parameters:

§ reset: Mark notification as unread

POST example

[
 {
 "id": 4999,
 "eventDate": 1459760812000,
 "senderId": 8991
 },

enaio® appconnector API Documentation

enaio® Page 82

 ...
]

/osrest/api/notifications/subscriptions/process/{id}/{eventDate}

§ Supported query methods: GET

The method sets the status of a subscription notification to Processed. To do so,
both the object ID {id} and the date {eventDate} must be specified (both fields of a
notification). If successful, the function returns the value 0.

Required parameters:

§ id: ID of the object

§ eventDate: Date of the notification

§ password: Base64-encoded password for your own account, if the
subscription requires password validation. If a password is required but
not provided, the action will fail.

§ confirmed: true|false. If the subscription requires confirmation, true
must be used here. If false is used in such a case, the action will fail.

/osrest/api/notifications/subscriptions/process

§ Supported query methods: POST

§ Supported result formats: JSON

The method sets the status of follow-up notifications to Processed or Unprocessed.
To do so, both the object ID {id} and the date {eventDate} must be specified in each
case (both fields of a notification). If an error occurs during the "Mark as
processed" process, the method will return a list of notifications that could not be
marked as processed or unprocessed.

Required parameters:

§ id: ID of the object

§ eventDate: Date of the notification

§ senderId: The trigger for the follow-up (optional)

POST example

[
 {
 "id": 4999,
 "eventDate": 1459760812000,
 "senderId": 8991
 },
 ...
]

enaio® appconnector API Documentation

enaio® Page 83

/osrest/api/notifications/subscriptionQueries

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns all of the user's subscribed queries See below for an
explanation of the constants for "confirm," "notifyType," and "actions."

[
 {
 infoText: "For admin group",
 confirm: "NO_CONFIRMATION",
 aboGroup: "1263CA058C1841A5B5BD0F07C77BA901",
 notifyType: "INTERNAL",
 actions: [
 "INDEXDATA_MODIFIED"
]
 }
 ...
]

/osrest/api/notifications/subscriptionObjects

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all of the user's subscribed objects.

Actions can have the following values:

Key Description

INDEXDATA_MODIFIED The index data were changed.

DOCUMENT_MODIFIED A document was added to the object or it was
modified.

OBJECT_CREATED An object was created in the folder/register.

OBJECT_DELETED An object was deleted from the folder/register.

OBJECT_ADDED An object was added to the folder/register from
another cabinet.

OBJECT_MOVED_FROM_
TRAY

An object was added to the folder/register from
the user tray.

LOCATION_ADDED A object in the folder/register was copied to
another location.

Confirm can have the following values:

Key Description

NO_CONFIRMATION No confirmation required.

enaio® appconnector API Documentation

enaio® Page 84

CONFIRMATION Confirmation is required before the
notification can be deleted.

CONFIRMATION_PASSWORD Confirmation with password input is
required before the notification can be
deleted.

CONFIRMED Confirmation has been received.

NotifyType can have the following values:

Key Description

INTERNAL enaio® client notification.

E-MAIL E-mail notification.

[{
 "objectId": 1235,
 "infoText": "Free text when creating a subscription",
 "confirm": "NO_CONFIRMATION",
 "aboGroup": "7cf2ebaf2f7a451f8014a35d397996fe",
 "notifyType": "INTERNAL",
 "actions": [
 "OBJECT_DELETED"
],
 "groupsToBeNotified": [
 {
 "id": 8522,
 "name": "PERSONAL"
 },
 ...
],
 "usersToBeNotified": [
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 ...
]
},
...
]

/osrest/api/notifications/subscriptionObjects/{id}

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all notifications set up for the user that relate to a given
object. See above for an explanation of the constants for "confirm," "notifyType,"
and "actions."

{
 "objectId": 1235,
 "infoText": "Free text when creating a subscription",

enaio® appconnector API Documentation

enaio® Page 85

 "confirm": "NO_CONFIRMATION",
 "aboGroup": "7cf2ebaf2f7a451f8014a35d397996fe",
 "notifyType": "EMAIL",
 "actions": [
 "OBJECT_DELETED"
],
 "groupsToBeNotified": [
 {
 "id": 8522,
 "name": "PERSONAL"
 },
 ...
],
 "usersToBeNotified": [
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 ...
]
}

/osrest/api/notifications/subscriptionObjects

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to add or modify a subscription to the object with the specified ID.
The subscription to be added/modified must be submitted as POST in JSON
format, exactly as it was obtained via the GET method of the same name. If a new
subscription should be created, the aboGroup entry must be left empty. If an
existing subscription is to be modified, its aboGroup must be included here. If
successful, the method will return 0, otherwise it will return an error. See above for
an explanation of the constants for "confirm," "notifyType," and "actions."

{
 "objectId": 1235,
 "infoText": "",
 "confirm": "NO_CONFIRMATION",
 "aboGroup": "7cf2ebaf2f7a451f8014a35d397996fe",
 "notifyType": "EMAIL",
 "actions": [
 "OBJECT_DELETED"
],
 "mailAddresses": [
 "demo_deleted222@demo.optimal-systems.de"
],
 "groupsToBeNotified": [
 {
 "id": 8522,
 "name": "PERSONAL"
 },
 ...
],
 "usersToBeNotified": [
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"

enaio® appconnector API Documentation

enaio® Page 86

 },
 ...
]
}

/osrest/api/notifications/subscriptionMultiObjects

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to add or modify multiple subscriptions to objects. The
subscriptions to be added/modified must be submitted as POST in JSON format,
exactly as they were obtained via the GET method of the same name. As this
method can modify multiple subscriptions at once, the top JSON level is an array of
the JSON subscription objects. aboGroup is left empty for new subscriptions, and
filled in for subscriptions to be modified. New subscriptions and subscriptions to
be modified can both be specified in a single POST JSON array. The method will
return an array of all failed objects. See above for an explanation of the constants
for "confirm," "notifyType," and "actions."

[{
 "objectId": 1235,
 "infoText": "",
 "confirm": "NO_CONFIRMATION",
 "aboGroup": "7cf2ebaf2f7a451f8014a35d397996fe",
 "notifyType": "EMAIL",
 "actions": [
 "OBJECT_DELETED"
],
 "mailAddresses": [
 "demo_deleted222@demo.optimal-systems.de"
],
 "groupsToBeNotified": [
 {
 "id": 8522,
 "name": "PERSONAL"
 },
 ...
],
 "usersToBeNotified": [
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 ...
]
},
...
]

/osrest/api/notifications/subscriptionObjects/delete/{id}

§ Supported query methods: GET

§ Supported result formats: JSON

enaio® appconnector API Documentation

enaio® Page 87

Use this method to delete a subscription. The aboGroup of the subscription must
be provided as the ID.

If successful, the method will return 0, otherwise it will return an error.

/osrest/api/notifications/subscriptionObjects/delete

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to delete multiple subscriptions to objects. The JSON in the POST
body is a string array containing the aboGroup elements to be deleted. The method
returns all aboGroup elements for which the associated subscription could not be
deleted.

[
7cf2ebaf2f7a451f8014a35d397996fd,
7cf2ebaf2f7b451f8014a35d397996fe,
7cf2ebaf2f7c451f8014a35d397996ff,
...
]

/osrest/api/notifications/revisitObjects

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all of the user's follow-ups.

{
 "osid": 14008672,
 "duedate": 1433847600000,
 "subject": "",
 "creationdate": 1433847417000,
 "notified": false,
 "confirm": false,
 "notifiedbymail": false,
 "sender":
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 "recipients": [
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 }

/osrest/api/notifications/revisitObjects/{id}

§ Supported query methods: GET

§ Supported result formats: JSON

enaio® appconnector API Documentation

enaio® Page 88

The method returns a list of all follow-ups set up for the user that relate to a given
object.

{
 "osid": 14008672,
 "duedate": 1433847600000,
 "subject": "",
 "creationdate": 1433847417000,
 "notified": false,
 "confirm": false,
 "notifiedbymail": false,
 "sender":
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 "recipients": [
 {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 ...
]
}

/osrest/api/notifications/revisitObjects

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to add or modify a follow-up. The follow-up to be added/modified
must be submitted as POST in JSON format, exactly as it was obtained via the GET
method of the same name.
The recipient structure in the JSON must be duplicated and added as
newRecipients. Only those users listed in newRecipients will be included in the new
or modified follow-up. If a new follow-up is to be created, no creationdate can be
provided. However, if an existing follow-up is to be modified, its creationDate must
be specified. If successful, the method will return 0, otherwise it will return an
error.

{
 "osid": 14008672,
 "duedate": 1433847600000,
 "subject": "",
 "creationdate": 1433847417000,
 "notified": false,
 "confirm": false,
 "notifiedbymail": false,
 "notificationmail": "E-mail address if notifiedbymail is true",
 "sender": {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 "recipients": [{
 "id": 77,
 "name": "DEMO",

enaio® appconnector API Documentation

enaio® Page 89

 "fullname": "John Doe"
 },
 ...
],
 "newRecipients": [{
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 ...
]
}

osrest/api/notifications/revisitMultiObjects

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to add or modify multiple follow-ups for objects. The follow-ups
to be added/modified must be submitted as POST in JSON format, exactly as they
were obtained via the GET method of the same name. As this method can modify
multiple follow-ups at once, the top JSON level is an array of the JSON follow-up
objects. creationDate is left empty for new follow-ups, and specified for follow-ups
to be modified. New follow-ups and follow-ups to be modified can both be
specified in a single POST JSON array. The method will return an array of all failed
objects.

[{
 "osid": 14008672,
 "duedate": 1433847600000,
 "subject": "",
 "creationdate": 1433847417000,
 "notified": false,
 "confirm": false,
 "notifiedbymail": false,
 "notificationmail": "E-mail address if notifiedbymail is true",
 "sender": {
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 "recipients": [{
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 ...
],
 "newRecipients": [{
 "id": 77,
 "name": "DEMO",
 "fullname": "John Doe"
 },
 ...
]
},
...
]

enaio® appconnector API Documentation

enaio® Page 90

/osrest/api/notifications/revisitObjects/delete/{id}?userId=X&dueD
ate=Y

§ Supported query methods: GET

§ Supported result formats: JSON

Use this method to delete a follow-up. The aboGroup of the subscription must be
provided as the ID.
If successful, the method will return 0, otherwise it will return an error.

Required parameters are:

§ userId (int): Defines the user (recipient) whose follow-up will be deleted.

§ dueDate (long – Java timestamp): dueDate value of the follow-up.

/osrest/api/notifications/revisitObjects/delete

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to delete multiple follow-ups. At the top level, the POST body is a
JSON array containing the follow-ups to be deleted. The respective userId is the ID
of the user that the follow-up is set up for.

[{
 "osid": 14008672,
 "duedate": 1433847600000,
 "userId": 12345
},
...
]

/osrest/api/notifications/workflows

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all notifications on workflow events.

Optional parameters are:

§ starttime (int - Unix timestamp): Point in time from which notifications
are to be displayed (default: no restriction).

§ metadata (string): File name of an alternative metadata mapping.

§ clienttype (string): Specifies the client type workflow for which
notifications are received ("web," "mobile," "desktop," optionally with a
specific language, e.g. "web_de," "web_en," "web_fr").

§ verbose (Boolean): More detailed data on the workflows will be returned.

To use this feature, workflow use must be enabled in the configuration.

enaio® appconnector API Documentation

enaio® Page 91

SessionService

/osrest/api/session

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns information on the enaio® user session.

§ server: enaio® server address

§ port: enaio® server port

§ username: Name of the user who is logged in.

§ osguid: enaio®-internal GUID of the user who is logged in.

§ sessionGuid: GUID of the current user session on enaio® server.

{
 server: "192.168.0.1"
 port: 4000
 username: "demo"
 osGuid: "648F3878205E4FF8BD08B9A4C96EDDF1"
 sessionGuid: "B982870084354AA99768C7617B0135B9"
}

/osrest/api/session/login

§ Supported query methods: POST

§ Supported result formats: JSON

A form-based login is possible with this method.

To this end, the following parameters must be passed in a POST request with the
content type application/x-www-form-urlencoded:

§ osrest_username

§ osrest_password

The method returns information on the enaio® user session (see
/osrest/api/session).

/osrest/api/session/logout

§ Supported query methods: GET

§ Supported result formats: JSON

It is possible to end the current user session (log out) with this method.

/osrest/api/session/changePassword

§ Supported query methods: POST

enaio® appconnector API Documentation

enaio® Page 92

§ Supported result formats: HTTP 204 / No Content

Users may change their own password with this method.

The following JSON must be included in the POST body:

{
 "oldPassword": "Old password encoded as Base64",
 "newPassword": "New password encoded as Base64"
}

/osrest/api/session/checklicense/[license module]

§ Supported query methods: GET

§ Supported result formats: JSON

Use this method to check whether enaio® license modules are available on the
server. The method returns a simple JSON string with true or false. If case of doubt
required license modules must be assigned to the OSRest workstation.

/osrest/api/session/runscript

§ Supported query methods: POST

§ Supported result formats: JSON

Use this method to run a VB script on the server.

Parameters and the name of a script file in the configuration subdirectory scripts
are provided here in a POST request. If only parameters in a server-side event need
to be evaluated, the script parameter can be omitted.

{
 "parameters": {
 "RecordNumber": "4711",
 "GetLastVersion": true
 },
 "script": "example.vbs"
}

The call returns the individual return parameters of the job:

{
RecordNumber: "4711",
MaxVersion: 4,
DocumentCount: 6
}

/osrest/api/session/user/groups

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all groups in the system.

[

enaio® appconnector API Documentation

enaio® Page 93

 "EDEKA",
 "STANDARD",
 "DEMO",
 "PERSONAL",
 "NAVISION",
 "CRM",
 "FSA",
 "QMS-READ",
 "PRESSE",
 "GEVER"
]

/osrest/api/session/user/users

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns a list of all users in the system.

{"id": 14024926,
"name": "SCHMIDT",
"fullname": "Sebastian Schmidt"

}

/osrest/api/session/userdesktops

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the private and public desktop in tree form.

Optional parameters are:

§ refresh (Boolean): If this parameter is set to 'true,' the cache will be
ignored and the queries will be requested from the server again.

/osrest/api/session/userdesktops/add

§ Supported query methods: POST

§ Supported query format: JSON

Use this method to add folders and references to DMS objects to the current user's
private desktop. If no "parentId" is specified, the object will be added at the top
level of the private desktop.

The "objectTypeId" for DMS objects is optional. However, it is recommended to
include it for performance reasons.

Adding folders

{
 "name": "Customer folder",
 "parentId" : "26279936",
 "type" : "FOLDER"

enaio® appconnector API Documentation

enaio® Page 94

}

Adding a DMS object

{
 "name": "Contract record 12",
 "id": "4570",
 "objectTypeId" : "131082",
 "parentId": "26279936",
 "type" : "OBJECT"
}

/osrest/api/session/userdesktops/remove

§ Supported query methods: POST

§ Supported query format: JSON

Use this method to remove folders, search requests, and references to DMS objects
from the current user's private desktop.

Removing a folder

{
 "folderId": "26279941",
 "parentId": "26279936",
 "type": "FOLDER"
}

Removing a saved search

{
 "name": "1",
 "type": "QUERY"
}

Removing a reference to a DMS Object

{
 "name": "1",
 "type": "OBJECT"
}

ServiceInfoService

/osrest/api/serviceinfo

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns information about the API version and build revision of the
OSREST service. This information will be requested for support cases. This service
will also display the capabilities of the installation (see 'Capabilities of enaio®
appconnector').

{
 apiVersion: "1.1.0"
 buildRevision: "5168"
}

enaio® appconnector API Documentation

enaio® Page 95

/osrest/api/serviceinfo/ping

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns the time on the OSREST server as a timestamp. The feature is
mainly used to test the accessibility of the service and the authentication.

/osrest/api/serviceinfo/errorTypes/

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns all error types known by the API.

/osrest/api/serviceinfo/errorTypes/{errorCode}

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns a single error type.

{
 "ErrorType": "UNSPECIFIC_ERROR",
 "HttpStatusCode": "Internal Server Error - [500]",
 "DefaultMessage": "It looks like an internal failure occurred –
this should not have happened! :(",
 "ErrorCode": 0
}

OSFileService

/osrest/api/anon/osfile/[id]

§ Supported query methods: GET

§ Supported result formats: application/octet-stream

The method creates an internal enaio® link file for the object with the specified ID.
This service can be used without authentication.

The optional query parameter followactivevariant=true redirects the link to
an active variant of the object, if it refers to an inactive variant.

WorkflowService

/osrest/api/workflows

§ Supported query methods: GET

enaio® appconnector API Documentation

enaio® Page 96

§ Supported result formats: JSON

This method returns a list of workflows that can be started by the user.

Optional parameters are:

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

Result:

{
 id: "4A3D7DE0352B496F9C4CD8565479B1B3",
 title: "Inbox (ad-hoc)",
 info: "Version 3.0",
 workflowParameters: [
 {
 readonly: false,
 type: "TEXT",
 id: "783241C856A04D17AEE520C9630CFDA1",
 name: "sApplicant",
 value: ""
 },
 ...,
},
...

/osrest/api/workflows/start

§ Supported query methods: POST/JSON

This method starts a workflow.

Input: An entry from the results of (/osrest/api/workflows), with adapted values
(value) if necessary.

Optional parameters are:

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

{
 "id": "16B30DD524614774A64C26346B7A3B01",
 "workflowParameters": [
 {
 "type": "TEXT",
 "id": "55C31B02940B4FC98772C583DD627AC5",
 "name": "sOutputParameter",
 "value": "output",
 "readonly": false
 },
 {
 "type": "LIST",
 "id": "45319353B64E47F0B18CC4F0581B24BE",
 "name": "sInputParameter",
 "value": "Inbox",
 "readonly": false
 },

enaio® appconnector API Documentation

enaio® Page 97

 {
 "type": "TEXT",
 "id": "5ACF5B12D1BA4C8AA722F1718FA06BBF",
 "name": "sRelease",
 "value": "false",
 "readonly": false
 }
],
 "files": [
 "4133"
]
}

/osrest/api/workflows/startWithData

§ Supported query methods: POST/JSON

This method starts a workflow, thus putting the files in the workflow filing tray.
The workflow is started and files uploaded in the workflow filing tray using a
multipart POST request (RFC 1867). These must contain the content disposition
'form-data' and the filename attribute with the file name. The workflow is passed
as text to a 'data' content disposition in JSON format (see
'/osrest/api/workflows/start').

Optional parameters are:

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

/osrest/api/workflows/running

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns a list of all work items that the user can access. The parameters
are those that were configured for display in the inbox.

Optional parameters are:

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

§ verbose (Boolean): More detailed data on the work items will be
returned.

Short result:

[
 {
 id: "ABE6D05571CF40968F8447C1556D33CA",
 processID: "0B938F1389DD4877BD178DD1B83A2EBC",
 title: "Initialization – Task: Take note",
 info: "Comment: This task still needs to be completed."
 creationTime: 1317038062000,

enaio® appconnector API Documentation

enaio® Page 98

 personalized: "MEIER",
 substitute: false,
 read: false
 },
 ...
]

Detailed result (verbose):

[
 {
 id: "ABE6D05571CF40968F8447C1556D33CA",
 processID: "0B938F1389DD4877BD178DD1B83A2EBC",
 iconId: "1073743021",
 activityName: "Initialization",
 processName: "Default ad hoc workflow 27",
 processSubject: "Task: Take note",
 creationTime: 1465635668000,
 personalized: "MEIER",
 read: false,
 substitute: false,
 overTime: true,
 warningTime: 1465635668000,
 workflowParameters: [
 {
 type: "TEXT",
 name: "Comment",
 value: "This task still needs to be completed.",
 position: 0
 }
]
 },
 ...
]

/osrest/api/workflows/running/full/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

The method returns all the XML files of a WorkItem in JSON format. These are:
ExtendedAttributes, Parameters, Version, WorkflowType, File, Masks, and
ProcessResponsible.

Parameter:

§ id: WorkItem ID

Optional parameters are:

§ refresh (Boolean): Ignores the cache and retrieves WorkItem data again.

§ personalize (Boolean): The WorkItem will also be personalized when
opened.

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

enaio® appconnector API Documentation

enaio® Page 99

Result:

{
 "WorkItem": {
 "ExtendedAttributes": {
 "ExtendedAttribute": [
 {
 "Value": "0",
 "Name": "CHECK_PASSWORD"
 },
 ...
]
 },
 "Parameters": {
 "Parameter": [
 {
 "WFVar": {
 "Types": { },
 "IntegerSafe": "0"
 },
 "DataField": "49623478004E4419BF976B182871D674",
 "Selection": "",
 "ListType": "",
 "Mode": "3",
 "FormField": "0F8D00DCF1F14649BE9E407632F415E7",
 "InfoText": "",
 "Name": "intNumber"
 },
 ...
]
 },
 "Version": "31",
 "WorkflowType": "1",
 "File": {
 "Lists": {},
 "Docs": {}
 },
 "Masks": {
 "Mask": {
 "MaskFields": {
 "MaskField": [
 {
 "ToolTip": "This is a mandatory
field!|",
 "FieldTop": "100",
 "RegularExpression": {},
 "InpRight": "80",
 "InpBottom": "12",
 "Flags": "1",
 "InternalName": "",
 "FieldBottom": "12",
 "Name": "MandatoryField",
 "ValuesId": "",
 "TabOrder": "0",
 "Init": "",
 "FieldRight": "30",
 "FieldLeft": "45",
 "Flags1": "0",
 "InpLeft": "80",
 "DataType": "X",
 "InpLen": "50",
 "Flags2": "0",
 "Id":
"833FD8E7FD614083A31DB9BBEB37A94D",
 "InpTop": "100"

enaio® appconnector API Documentation

enaio® Page 100

 },
 ...
]
 }
 },
 "FrameWidth": "428",
 "FrameHeight": "250",
 "Id": "00F51E9EB65141BD92601F625E61E42C",
 "Flags": "0",
 "Name": "m"
 }
 },
 "ProcessResponsible": "1"
 }
}

/osrest/api/workflows/running/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns all parameters and files that belong to a workflow activity.

Parameter:

§ id (string): ID of the workflow activity

§ personalize (Boolean): The WorkItem will also be personalized when
opened.

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

§ verbose (Boolean): Supplements the returned data with more detailed
information about record elements.

Result:

{
 id: "ABE6D05571CF40968F8447C1556D33CA",
 workflowParameters: [
 {
 "readonly": false,
 "type": "CHECKBOX",
 "id": "5ACF5B12D1BA4C8AA722F1718FA06BBF",
 "name": "A check box",
 "value": "0",
 "required": false
 },
 {
 "readonly": false,
 "type": "RADIO",
 "id": "0F665AAAA1C34569B6863C3F73498204",
 "name": "completed",
 "value": "3",
 listData: [
 "RadioButton1",
 "RadioButton2"
],
 "required": false

enaio® appconnector API Documentation

enaio® Page 101

 },
 {
 "readonly": false,
 "type": "TEXT",
 "id": "EFF64844A6A241169EE8AB19DC05886A",
 "name": "RegExp field",
 "value": "",
 "regularExpression":
"Value\\{(.*)\\}\\|Message\\{(.*)\\}",
 "required": false
 },
 {
 "readonly": true,
 "type": "DATE",
 "id": "88CA29EB04E54377AC8D3C788CE90906",
 "name": "Date readonly",
 "value": "",
 "required": true
 }
],
 files: [
 "1452"
]
}

Result (verbose):

{
 id: "ABE6D05571CF40968F8447C1556D33CA",
 workflowParameters: [
 {
 "readonly": false,
 "type": "CHECKBOX",
 "id": "5ACF5B12D1BA4C8AA722F1718FA06BBF",
 "name": "A check box",
 "value": "0",
 "required": false
 },
 ...
],
 files: [
 "1452"
],
 verboseFiles: [
 {
 id: "1452",
 objectTypeId: "131081",
 location: "1",
 workspace: "1",
 deletable: true,
 useActiveVariant: false,
 moveable: true,
 sig: "0",
 rights: "15",
 originalId: "1452",
 display: "1"
 }
]
}

enaio® appconnector API Documentation

enaio® Page 102

/osrest/api/workflows/personalize

§ Supported query methods: POST

§ Supported result formats: JSON

The method personalizes WorkItems for the user who is logged in. To this end, the
ID of each WorkItem must be specified. If an error occurs during personalization,
the method will return a list of WorkItems that could not be personalized.

Required parameters:

§ id (string): WorkItem ID

Optional parameters:

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

[
 {
 "id": "1F93E705A4FB46C3B237CC582FD9BFE1"
 },
 ...
]

/osrest/api/workflows/depersonalize

§ Supported query methods: POST

§ Supported result formats: JSON

The method removes personalization from the specified WorkItems for the user
who is logged in. To this end, the ID of each WorkItem must be specified. If an
error occurs when removing personalization, the method will return a list of
WorkItems from which the personalization could not be removed.

Required parameters:

§ id (string): WorkItem ID

Optional parameters:

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

[
 {
 "id": "1F93E705A4FB46C3B237CC582FD9BFE1"
 },
 ...
]

/osrest/api/workflows/forward

§ Supported query methods: POST/JSON

enaio® appconnector API Documentation

enaio® Page 103

Optional parameters:

§ clienttype (string): Specifies the client type for which the workflow form
will be internally loaded for saving ("web," "mobile," "desktop," or forms
in a specific language e.g. "web_de," "web_en," or "web_fr").

This method forwards a workflow activity. It requires the JSON result of
/osrest/api/workflows/running/[id] to be passed (with adapted parameter
values if required).

POST example

{
 id: "A568441085B74CBDB088C7B43838AAEA",
 workflowParameters: [{
 "type": "TEXT",
 "id": "2A1B85B652A5423BAE78CA0C2FBDAA6D",
 "name": "MandatoryField",
 "value": "modified text"
 }, ...
],
 files: ["1452"],
 (optional) verboseFiles: [
 {
 id: "1452",
 workspace: 0
 }
]
}

Making changes to the workflow file

§ Adding a DMS object to the record

POST example, adding a new file element

 {
 id: "A568441085B74CBDB088C7B43838AAEA",
 workflowParameters: [],
 files: [],
 verboseFiles: [
 {
 id: "1527",
 objectTypeId: "262144",
 location: "1", (1 - DMS object exists in file
system, 2 - DMS object only exists in the system tray)
 workspace: "0", (0 - Info area of the record, 1
- Workspace of the record)

 (optional)
 deletable: false,
 useActiveVariant: false,
 moveable: false
 }
]
}

§ Editing a record element

POST example, editing a record element

 {
 id: "A568441085B74CBDB088C7B43838AAEA",
 workflowParameters: [],

enaio® appconnector API Documentation

enaio® Page 104

 files: ["1527"],
 verboseFiles: [
 {
 id: "1527",

 (only the property that was modified is required in
each case)
 workspace: "0", (0 - Info area of the record, 1
- Workspace of the record)
 deletable: false,
 useActiveVariant: false,
 moveable: false
 }
]
}

§ Deleting a DMS object from the record

To delete a DMS object from the record, the ID of the relevant
object must be deleted from the "files" property.

/osrest/api/workflows/cancel

§ Supported query methods: POST/JSON

Optional parameters:

§ save: true|false. If 'true,' the data included will be saved.

§ clienttype (string): If save:true, then specifies the client type for which
the workflow form will be internally loaded for saving ("web," "mobile,"
"desktop," or forms in a specific language e.g. "web_de," "web_en," or
"web_fr").

Use this method to save a workflow activity with new values without forwarding it.
It requires the JSON result of /osrest/api/workflows/running/[id] to be passed (with
adapted parameter values if required) (see forward call).

/osrest/api/workflows/processes/[Id]

§ Supported query methods: GET

§ Supported result formats: JSON

This method provides all running workflow processes of an object.

Parameter:

§ id (int): OSID of the object

Result:

[
 {
 "id": "D44ACCBDCD14481ABA425E383501CD83",
 "name": "Test Mobile 0.8 188",
 "subject": "Test workflow for enaio app",
 "state": "RUNNING",
 "creatorId": "217F716436F04D85AFCDE61F7192DD7D",

enaio® appconnector API Documentation

enaio® Page 105

 "creationTime": 1392730091000,
 "processResponsible": false,
 "activities": []
 },
 {
 "id": "CF51FCD484F246A6A02898F1522FC3E3",
 "name": "Test Mobile 0.8 185",
 "subject": "Test workflow for enaio app",
 "state": "COMPLETED",
 "creatorId": "217F716436F04D85AFCDE61F7192DD7D",
 "creationTime": 1392281546000,
 "processResponsible": false,
 "activities": [
 "Activity Client",
 "Activity mobileDMS",
 "Activity mobileDMS 2"
]
 }
]

/osrest/api/workflows/abort

§ Supported query methods: POST/JSON

This method aborts one or more workflow processes.

Input: Either the process ID of the workflow instance or an OSID of a file
document. In the latter case, all workflow instances that contain this file document
will be aborted. This means that more than one workflow instance may be aborted!
First, the processID is evaluated. If it is present, the osID will be ignored. If no
processID is present, the osID will be evaluated.

{
 "processID":"07D8A5CC07D94BDC9604EA6377085891",
 "osID":"1532"
}

/osrest/api/workflows/absence/[true|false]

§ Supported query methods: GET

§ Supported result formats: JSON

This method subscribes or unsubscribes the current user to/from workflows.

Input: If true is passed as the final path element, the current user will be
unsubscribed from workflows and will no longer receive workflows via the
notification call. Conversely, false as the final path element will subscribe the user
to workflows again. The following JSON result, for example, will be returned for
the path element true. The current status is returned in the result key wfAbsence.

{
 "null": {
 "id": "AA772557EC874AF48B229B8D4832D61B",
 "wfAbsence": "true"
 }
}

enaio® appconnector API Documentation

enaio® Page 106

ObjDevService

/osrest/api/objdef/full

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns the full object definitions in JSON format. Depending on size,
this call can take a while to complete and produce quite extensive results. The
structure is equivalent to XML, only transformed to JSON.

/osrest/api/objdef/languages

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns the languages defined in the object definition in JSON format.
Depending on size, this call can take a while to complete and produce quite
extensive results. The structure is equivalent to XML, only transformed to JSON.

/osrest/api/objdef/search/[id]

§ Supported query methods: GET

§ Supported result formats: JSON

This method expects an object type ID from a folder, register, or document, and
returns this part of the object definition in JSON format. The structure of the JSON
is equivalent to XML.

Parameter:

§ id: ObjectTypeId of the object

Optional parameters:

§ refresh: Retrieves the object definitions again

JSON content

{
 "object": {
 "IconID": "1073742179",
 "compressionflags": "0",
 "cotype": "55",
 "extablename": "",
 "fields": {"field": [
 {
 "classstring": "",
 "field_pos": {
 "bottom": "398",
 "left": "286",
 "right": "229",
 "top": "26"

enaio® appconnector API Documentation

enaio® Page 107

 }

/osrest/api/objdef/search

§ Supported query methods: POST

§ Supported result formats: JSON

This method expects one or more object type IDs from a folder, register, or
document, and returns these parts of the object definition in JSON format. The
structure of the JSON is equivalent to XML.

Optional parameters:

§ refresh: Retrieves the object definitions again

POST example:

[
 { "id": 22 }, { "id": "413" }, ...
]

Result:

{
 "objectTypes": [
 {
 "internal": "addresses",
 "cotype": "2",
 ...
 },
 ...
]
 }

OrganizationService

/osrest/api/organization/users

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns a list of all ECM users.

/osrest/api/organization/groups

§ Supported query methods: GET

§ Supported result formats: JSON

This method returns a list of all ECM groups that the current user is a member of
or, if the 'all' parameter is passed, all ECM groups in the system.

Optional parameters are:

§ all (Boolean): All groups in the system will be returned (default: false).

enaio® appconnector API Documentation

enaio® Page 108

§ loadUsers (Boolean): The members (users) of each group will be
returned.

/osrest/api/organization/sendmail

§ Supported query methods: POST

§ Supported result formats: JSON

This method can be used to send an email. A JSON mail object must be passed as
the POST body.

{
 "receiver": "recipient@optimal-systems.de",
 "sender": "sender@optimal-systems.de",
 "subject": "E-mail title",
 "text": "E-mail content"
}

/osrest/api/organization/avatar/{username}

§ Supported query methods: GET

§ Supported result formats: Image/*.*

This method returns the avatar picture of the user with the specified user name for
download. The avatar will be returned in size 80px.

/osrest/api/organization/avatar/{username}/{size}

§ Supported query methods: GET

§ Supported result formats: Image/*.*

This method returns the avatar picture of the user with the specified user name for
download. The avatar will be returned in the size specified with size.

/osrest/api/organization/user/updateCreate

§ Supported query methods: POST

§ Supported result formats: JSON

This method can be used to create an ECM user or modify the data of an existing
ECM user.

{
 "id": 0,
 "name": "USER NAME",
 "fullname": "John Doe",
 "password": "password",
 "description": "This user has this free text description",
 "locked": 0,
 "email": "max@mustermann.de"

enaio® appconnector API Documentation

enaio® Page 109

}

Supervisor rights are required to run this method. If 0 is passed as the ID, the user
will be created. If ID > 0, the relevant user will be updated. It is not possible to
update the user name.

/osrest/api/organization/user/delete/{id}

§ Supported query methods: GET

This method deletes the ECM user with the specified ID. Supervisor rights are
required to run this method. Supervisor users cannot be deleted.

Optional parameters are:

§ transferPortfolios (Boolean): The portfolios of the user to be deleted can
be transferred to another user.

§ transferNotifications (Boolean): The subscriptions and follow-ups of the
user to be deleted can be transferred to another user.

§ transferUserId(Integer): The user ID of the ECM user to whom the
portfolios and/or subscriptions and follow-ups should be transferred.

IconService

Catalog icons for hit list objects can be retrieved via the IconService. The "iconId"
JSON attribute exists within hit lists for this purpose, and specifies the ID of an
object's catalog icon.

/osrest/api/icon/preload

§ Supported query methods: POST

§ Supported result formats: NONE

The method loads a list of catalog icons from enaio® server. This means that enaio®
appconnector does not need to retrieve each icon from enaio® server individually
when using icon/{id} later on. If successful, only an HTTP 204 status code (success,
no content) will be returned, without content. In the event of an error, the HTTP
status code will vary accordingly.

{
 "iconIds": [
 1073741986,
 1073741987,
 1073741988,
 1073742158,
 1073742242
]
 }

enaio® appconnector API Documentation

enaio® Page 110

/osrest/api/icon/{id}

§ Supported query methods: GET

§ Supported result formats: Image/gif

This method returns the catalog icon with the specified ID for embedding in an
<img...> tag. For multiple icons in hit lists, it is recommended to load them in
advance using the preload method.

Results
OSRest returns three types of results:

§ Hit Lists

§ Notification Lists

§ Saved queries

Hit Lists
{
 -
 documentResult: {
 pagesize: 500
 startposition: 0
 totalHits: 18

 -
 documents: [
 -
 {
 id: "1452"
 type: "FOLDER"

 -
 fields: {
 title: "Stadtwerke Jena GmbH"
 info: "Göschwitzer Str. 22 7745 Jena"
 }
 fav: false
 }, ...
]
 }
}

documentResult is the root element of a hit list. It contains information such as
pagesize, startposition (offset), and totalHits, as well as a list of
documents.

documents represents the hits from enaio®. A document has the attributes id, type,
fields, and fav.

id: OSID of the hit

type: The document type of a hit. Possible values: FOLDER, REGISTER, DOCUMENT.

fields: List of the hit's mapped index data (see metadata mapping)

fav: Flag indicating whether a hit is in the favorites folder.

enaio® appconnector API Documentation

enaio® Page 111

Notification Lists
notifications: [
 -
 {
 id: "9015"
 type: "DOCUMENT"
 notificationType: "REVISIT"
 eventDate: 1282654839000
 -
 fields: {
 title: "Hugo Distler"
 info: ""
 }
 },...
]

notifications is the root element of the notification list. It contains a list of
notifications.

A notification contains the information id, type, notificationType, eventDate,
and fields.

id: OSID of the hit

type: The document type of a hit. Possible values: FOLDER, REGISTER, DOCUMENT.

notificationType: Notification type. Possible values: REVISIT, SUBSCRIPTION,
WORKFLOW.

eventDate: Date of the notification

fields: List of the hit's mapped index data (see metadata mapping)

Saved queries
{
 -
 storedqueries: [
 -
 {
 id: 14004695
 name: "Open support calls"
 queryParams: []
 }
 -
 {
 id: 14041962
 name: "E-mails"
 -
 queryParams: [
 -
 {
 object: "Email"
 field: "Date:"
 dataType: "DATE"
 }
]
 },...
]
}

storedqueries is the root element. It contains a list of saved queries.

A saved search contains the information id, name, and queryParams.

enaio® appconnector API Documentation

enaio® Page 112

id: OSID of the saved search

name: Name of the saved search

queryParams: List of parameters of the saved search (if available)

	Introduction
	enaio® appconnector
	About enaio® appconnector
	IT Security

	System Requirements
	Installation
	Installing a Hotfix or Patch
	Core Service Update

	Configuration
	Configuring the JVM
	The enaio® appconnector Configuration File
	enaio® client
	Capabilities of enaio® appconnector
	enaio® apps
	Script Language

	DropTargets
	Configuration
	Testing DropTargets

	Push Notification Service for enaio® apps
	Configuration

	Attachment
	Integrating enaio® appconnector with .NET
	Integration Possibilities
	Authentication
	Handling JSON Responses Given by enaio® appconnector

	API Documentation
	General
	Authentication
	Services
	Results

