fos

OPTIMAL SYSTEMS

Software Documentation
enaio® editor-for-events

Version 8.50

optimal-systems.de Software fiir Macher.

All software products as well as all related extension programs and additional functions are registered
and/or in-use trademarks of OPTIMAL SYSTEMS GmbH, Berlin or its subsidiaries. They may only be
used according to a valid licensing agreement. The software as well as related documentation are
protected by German and international copyright law. Unauthorized duplication and sales is
plagiarism and subject to criminal prosecution. All rights reserved, including reproduction,
transmission, translation, and storage with/on all kinds of media. For all preconfigured test scenarios
or demo presentations: All company and person names which occur in examples (screenshots) are
fictional. Any resemblance to existing companies or persons is purely coincidental and unintentional.

Copyright 1992 — 2018 by OPTIMAL SYSTEMS GmbH

Cicerostraf3e 26
D-10709 Berlin

28.02.2018
Version 8.50

enaio® Page 2

enaio® editor-for-events Contents

Ccontents

(O] 01151 | £ 3
0o L8 To1 1o OO 4
ADOUL The MANUAL......c.ooiiieicicicc et 4
About enaio® BAItOr-fOr-BVENTS.........cveieececeecee e 4
Events for enaio® WeBCHENT............covvviiiiicecee e 5
Installation, Licensing, SECUFItY SYStEMcccovvveiiiieiieiercce e 5
V=T o 6
QUICK INErOAUCTION ..ottt et 6

(O [T) oY Lo [T V=T | £ 8
Events for Changes in Batch MOdEcccovvveieveieiiiciccee e 14

EVENT "STArTACLION ..o e 15

[EE LT 0] 1 1L 15
Structure of Handoff FIlESccooviviiiiicec e 17
Client-Side Handoff FIl€S........ooueii i 20
Handoff Data Of TabIES..........ccvieieiieeeee ettt 44

The ActiveX Control OXACTIVE.DLL. ... 45
111 1 100 TR 45

(@]] 1=T 01 £ 46
Examples Of Use iN VBSCIPL......ccociiieiireieiesesse e 51
SEIVEI=SIUE EVENTSvvivieeeeee ettt ettt st e st e st e st e s beesbeeste e st e e st e e steesreesre e e 52
Server Events for the Archiving Process..........cccocveveevieieieeseere e 53
SEIVEN-SIUE SCIIPLS . vivivetiieieisiee ettt e e 54
SCript DEVEIOPMENT ... e 54
RUNSCIIPE ..ot ne s 61

(€] o] o= I Tod £ o) £ UP 62
Controlling the INfo WINAOW ... 64
Event AdmiINISTratioNoceiiiiiie e 65
€NaI0® edItOr-fOr-BVENTS.........ccoiiiiicic s 67
enaio® editor-for-events — INtrodUCtIONccooeviviiiiicc e 67
Creating EVENTS ..ot 67
IMPOITING SCHPTS. ...ttt sttt seene e 69
The EAItOr WINAOW.........oiviieiiii ettt sttt st sre s b e e sbassbessre e 70
EXPOIT/IMPOIT. ..ttt ee 72
=] o0 oo 11 TSR 73
L0 3 T 76

enaio® Page 3

enaio® editor-for-events ‘ About the Manual

Introduction

About the Manual

The manual is available as a PDF file which is located in the documentation
directory.

All procedures described in the manual are based on mouse operation and use of
the ribbon buttons. However, all operations can be performed with the keyboard as
well. enaio® editor-for-events follows the conventions of MS Windows. Use Alt
plus the underlined letters in the menu.

About enaio® editor-for-events

enaio®

An event is a VB script which is assigned to an action in enaio® client with a DMS
object or an application situation, and is automatically started from enaio® client
by the user action. A VB script can, for example, carry out a validity check or
automatically complete data when saving the indexing of a DMS object.

Events can also be assigned to server jobs. Thus, a VB script can be run before or
after a server job is executed.

Create events using enaio® editor-for-events. As a component of the enaio® content
management, workflow, and archive system, it is an integral part of enaio® client.
Given that a user is provided with all necessary system roles and licenses, the
corresponding functions are activated in enaio® client.

For most events, enaio® client creates a handoff file with contextual data which can
be accessed for viewing and editing by use of a VB script. Some events require a
return value which can be entered into the handoff file. Other events update data
on the basis of modified entries in the handoff file. According to the return value,
enaio® client continues to execute the action or stops its execution.

The integrated ActiveX control oxactive.dl1 offers methods and objects that
allow reading and editing data of the handoff file in a script.

What is more, VB scripts may be used to execute actions independently of enaio®
client or to start the execution of actions in enaio® client independently of the
handoff file via the COM interface. Details on the COM interface can be found in
the 'enaio® client programming reference' documentation.

Before being saved to the database, events are encrypted but may also be saved and
exchanged as files.

The events written by OPTIMAL SYSTEMS will be provided as files in encrypted
format which can be imported and assigned to DMS objects with enaio® editor-for-
events.

To assign events to users, enaio® administrator must be used.

Page 4

enaio® editor-for-events Installation, Licensing, Security System

Events for enaio® webclient

Events for enaio® webclient are also created with enaio® editor-for-events, but in
JavaScript not VBScript. The documentation can be found online under:

https://help.enaio.com/blue/03 dev-doc/webclient/wc con scripting.htm

The enabling and disabling of events in enaio® administrator (cf. 'Event
Administration’) applies only for the enaio® client. Events in enaio® webclient are
always executed.

Installation, Licensing, Security System

enaio®

The components of enaio® editor-for-events will be automatically installed during
installation of enaio® client.

To enable the creation of events, the workstation must be provided with the 'EVE'
license, the 'ASC' client license, and the system role 'Client: Create events'.
Additionally, the system role 'Client: Debug events' is required if events are
designated to be tested.

To import events that were created by OPTIMAL SYSTEMS, the 'ASC' client
license and the system role 'Editor: Customize database’ are needed.

To delete events, you require the system roles 'Editor: Customize database’ and
'Clients: Create events'. In both cases, the 'EVE' license is not required.

The 'SDE' license is necessary if the 'dtr.SynchronizeData' server job is used as event
to transfer data.

In the enaio® client settings dialog, activate the access to the functions (see
‘Creating Events") so that they are available in the 'Object search' area.

Page 5

https://help.enaio.com/blue/03_dev-doc/webclient/wc_con_scripting.htm

enaio® editor-for-events Quick Introduction

Events

Quick Introduction

enaio®

An event is started by enaio® client or enaio® server as a result of a user action, an
application situation, or a job execution, and executes a script.

Licenses are required to be installed and necessary system roles must be respectively
assigned in order to enable the utilization of events (see 'Installation, Licensing,
Security System' and 'Event Administration").

A distinction must be made between client-side and server-side events:

§ Client-side events (see 'Client-Side Events') are triggered by actions in
enaio® client, for example when an object is shown.

8 Server-side events, on the other hand, are assigned to server jobs (see
Server-Side Events').

Events allow, e.g. automatically completing particular fields when saving the index
form in case these have been left empty by the user: if the editor did not insert his
name into the 'Editor’ field, an event can automatically fill in the name before the
index form is saved. You can use the event BeforeValidate for this.

In order to create such a client event, open the context menu of the DMS object in
the 'Object search' area and select the Add event item:

Dffnen

HMeu

Eelder fur Trefferliste
Einstellungen

Mappe fir diesen Typ anlegen

<l Pr Fur Suchleiste kopieren
- [E] Basisp .
] Papier Event hinzuflgen

Vollte Event importieren

Select the BeforeValidate item from the Add event dialog and confirm with OK:

Page 6

enaio® editor-for-events

enaio®

Event hinzufiigen

Quick Introduction

Event Beschreibung
Datenblatt
AfterSave Aufruf: mach erfolgreichem Speichem.n der Ubergabedat...
BeforeCancel Aufruf: var dem Abbrechen des Datenblattes.
Before Save Ausfrf: vor dem eigentlichen Speichem des Datenblattes....
+ OnChangeActivePage
OnClicktem
OnShow Aufraf: nachdem das Datenblatt gedffnet und mit Werten ...
Anfrage
Before StartQuery Aufruf: bevor die eigentliche Query durchgefuhrt wird.
Trefferiste
AfterDelete Aufraf: nachdem ein Objekt geloscht wurde Rickgabe: k...
AfterFinishQuery Ausfraf: nachdem eine Query beendet wurde Rickgabe: k...
AfterRestors Aufraf: nach dem Wiederherstellen eines Cbjektes aus de...
AfterSave Document Aufraf: nach dem Senden des Dokuments zum Applikatio...
Before Delete Ausfruf: bevor ein Objekt geldscht wird Rickaabe: OK-=5...
BeforeOpen Ausfrf: bevor ein Dokument oder Ordner gecfinet wirdRi...
Before Restore Ausfrf: nach dem Wiederherstellen eines Cbjektes aus de...
Before SaveDocument Ausfruf: vor dem Senden des Dokuments zum Applikations. ..
OnCopy Ausfruf: wenn ein Dokument oder Register per Drag & Dro...
OnMave Ausfruf: wenn ein Dokument oder Register per Drag & Dro...
Objekttyp
GlobalObject Type Script Ausfrf: Wird an jeden Objekttyp gehangt
Server-Everts
+ JobAfterObject
+/ JoblBeforeObject
Sammelanderung
Before Save Ausfrf: vor dem eigentlichen Speichem des Datenblattes....
+ OnChangeActivePage
OnClickltem
OnShow Aufruf: nachdem das Datenblatt gedffnet und mit Werten ...
Abbrechen

As a result, enaio® editor-for-events will open (see 'For searches in enaio® client,
users can configure the query behavior in the ‘Query behavior' area of their user-
specific personal settings dialog.

enaio® editor-for-events"). In this editor you enter the VB script code to be executed
by the BeforeValidate event.

.7 Objekt-Event (WF-Protokoll)... X l

LIRS YTTYT T,

if Acti

vepage . .A5Fislds. Item ("a
Activepage .ASFields.Item("authoxri
end if

ResultCode = L
WriceToFile ()

Insert the following script into the editor:

if ActivePage.ASFields.ltem("Editor') _Value = "' then
ActivePage.ASFields. Item('Bearbeiter'™) _Value = GetEnvironment(3)

end If

ResultCode = 1

WriteToFile()

To query whether or not the user has entered his name into the 'Editor’ field on the

index form (line 1), the ActivePage object is used to access the field's value. This

object represents a reference to the active data sheet of the index form (see

'‘Objects").

Page 7

enaio® editor-for-events Client-Side Events

As the method Item of the collection ASFields includes all fields of the form, it can
be used to access a particular field on the index form (here: the 'Editor’ field). To
address a particular field, its name must be passed as a parameter. For all objects,
the field names of an index form can be viewed in enaio® editor.

If no editor has been inserted, the name of the currently logged in user will be
identified and written to the 'Editor’ field (line 2).

Values are modified in the handoff file (see 'Handoff Files'). Modifications to the
handoff file will only be taken into account before the action is forwarded if the
return value is set to '1' (line 5, for return values see 'Client-Side Events').

Save the script by clicking =l Save.

The next time the index form is opened, the VB script will already insert the name
of the editor in case the field is still empty when saving.

If you use scripts to refer to dialog elements containing special characters, errors
may occur. In this case, use internal names for referring to dialog elements.

Client-Side Events

enaio® client and enaio® server run VB scripts once the assigned event takes place.
Select an event and create the VB script code. Events may need a return value which
will be written into the handoff file.

Client events are divided into the following groups:
8 Application

Events related to enaio® client.
§ Data sheet

Events related to the data sheets of DMS objects which are newly
created or of which the indexing is modified.

§ Hitlist

Events related to hit lists which result from searches or content
lists of folders and registers.

§ Query
Events related to search forms.
§ Cabinet

Event for drag & drop for moving documents into a folder

The following client-side events are available:

Reference Time of the Description of the return

execution value

after the user has no return value
logged on

enaio® Page 8

enaio® editor-for-events

Reference

Time of the
execution

Client-Side Events

Description of the return
value

Event
code

BeforeLogout Application [before the user has |1 = logout will be performed (9
logged out 0 = logout will not be

performed

OnStartApp Application |after enaio® client has|no return value 14
been started, instantly
before 'AfterLogin’

OnCloseApp Application [after check in of all |1 = exit will be performed 15
documents, before |9 = exit will not be performed
exiting enaio® client

BeforeLink Application |after having created a [0 = link or relation will be 21
link or relation in created
enaio@ client, before |1 = relation not created, dialog
data will be passed to |\ill not close
the server 2 = relation not created, dialog

will close
For links, every non-zero value
will cancel the process.

AfterLink Application |after the server has [no return value 22
created the link or the
relation

BeforeDeleteLink Application |after having deleted a [0 = link or relation will be 23
link or relation in deleted
enaio® client, before 1.5 = process will be canceled
?r‘? ta will be passed to Other values will cancel the

€ server process of deletion; it will be
continued with the object
selected next.

AfterDeleteLink Application |after the server has [no return value 24
deleted the link or the
relation

StartAction Application |[Call with server no return value 31
notification

OnClickltem Datasheet |after a button was 1 = data will be imported from |13
clicked the handoff file to the data

sheet
0 = data of the data sheet will
not be modified

enaio® Page 9

enaio® editor-for-events

OnShow

Reference

Data sheet

Time of the
execution

before opening the
data sheet

The handoff file
contains the
following entries:
'‘Action=NEW' if a
data sheet is opened
for new creation,
'‘Action=UPDATE"' if
a data sheet is opened
for editing,
'‘Action=READONLY
"if a data sheet is
opened in read-only
mode,
'‘Action=REQUEST"
if a search form is
opened.

Client-Side Events

Description of the return
value

1 = data will be imported from
the handoff file to the data
sheet

0 = data of the data sheet will
not be modified

-1 = data sheet will not be
opened

Event
code

BeforeValidate

Data sheet

after having clicked
‘Save' but before
enaio® client has
performed the
validity check and
before saving

The handoff file
contains the
following entries:
'‘Action=NEW' if an
object is created or
'‘Action=UPDATE" if
data are edited.

1 = data will be imported from
the handoff file to the data
sheet

Afterwards, enaio® client
performs the validity check and
saves the data.

0 = the data sheet will be saved
but the data of the handoff file
will not be imported to the
data sheet

-1 = creation or modification
of data will be canceled

-2 = data will be imported
from the handoff file to the
data sheet, the data sheet will
remain open, data will not be
saved

enaio®

Page 10

enaio® editor-for-events

Reference

Time of the
execution

Client-Side Events

Description of the return
value

Event
code

AfterValidate Data sheet |after the validity 1 = data will be imported from (36
check in enaio® client [the handoff file to the data
and before saving sheet
The handoff file 0 = the data sheet will be saved
contains the but the data of the handoff file
following entries: will not be imported to the
‘Action=NEW' if an |data sheet
obje_ct is created or _|-1 = creation or modification
Action=UPDATE"If |of data will be canceled
data are edited. -2 = data will be imported
from the handoff file to the
data sheet, the data sheet will
remain open, data will not be
saved
AfterSave Datasheet |after the validity no return value 3
check in enaio® client
and after saving
The handoff file
contains the
following entries:
‘Action=NEW' if an
object is created or
'‘Action=UPDATE"' if
data are edited.
BeforeCancel Data sheet [|after the 'Cancel’ 0 = the data sheet will not be |30
button was pressed |closed.
If other return values are used,
the data sheet will be closed.
OnEnterPage Data sheet |when switching the |1 = data of fields on the page |25
page of the control, which are part of the
'‘Pagecontrol’ dialog |handoff file, will be returned to
element the search form
0 = data of the handoff file will
be ignored
OnLeavePage Datasheet |when leaving a page |no return value 37
of the 'Pagecontrol’
dialog element
OnFocusGained Data sheet |When the focus is on |no return value 32
a text box.
The event can be
assigned to every text
box of a data sheet.

enaio®

Page 11

enaio® editor-for-events

Reference

Time of the
execution

Client-Side Events

Description of the return
value

Event
code

OnCellFocusGained |Data sheet [When the focus is on [no return value 39
a table cell.

OnValueChanged Data sheet [When the inputina |0 =no change 33
text box was -1 = back to the text box, the
completed entry is not changed

1 = data will be imported from
the handoff file to the text box

OnCellValueChanged |[Datasheet (When the inputina |0=no change 40
table cell was -1 = back to the text box, the
completed entry is not changed

1 = data will be imported from
the handoff file to the text box

BeforeAddRow Datasheet |Before anewrowis [0 =no change 34
added in a table. -1 = row is not added

BeforeDeleteRow Datasheet |Before arow is 0 =no change 35
deleted inatable. |1 = row is not deleted

BeforeStartQuery Query after the user pressed |1 = data will be imported from (4
‘Start query' on the |the handoff file to the search
search form, before |form
the search is actually |enajo® client will afterwards
executed perform the search.

0 = the search will be
performed without further
modification

-1 = the search will be canceled

AfterFinishQuery Hit list after the search no return value 5

BeforeDelete Hit list before an object is 1 = deletion will be executed |11
deleted 0 = deletion will not be

executed

enaio®

Page 12

enaio® editor-for-events

Reference

Time of the
execution

Client-Side Events

Description of the return
value

Event
code

BeforeUndoCheckOut [Hit list before the user action |-2 = the '‘Undo checkout' 27
‘Undo checkout'is |action will not be available for
applied to a this document
client action will be canceled for all
The selected documents
"NumberOfSelectedD |g = the *Undo checkout' user
ocuments’ constant action will be performed
§a2hbe usgdttfo qﬁery 1 =the 'Undo checkout' action
" e;crlp ort ?[\rlmv will be available, no user
many documents the | o,y tirmation required
checkout has been
undone.

AfterDelete Hit list after an object was [no return value 12
deleted

BeforeOpen Hit list before a document is |0 = do not open 16
opened 1=open

2 = open read-only

-4 = only workflow event:
opened object is shown in the
document viewer

OnMove Hit list when a document or |0, 1 = the document or register {17
register is moved will be moved
within a cabinet -1 = moving is not carried out

OnMoveExtern Hit list if a document is 0, 1 = the document or register |42
moved to a different |will be moved
cabinet -1 =moving is not carried out

OnAddLocation Hit list if a document or 0, 1 = assign location 18
register receives -1 = do not assign location
another location via
drag & drop

OnCreateCopy Hit list when a document or |0, 1 = the document or register |43
register is copied will be copied

-1 = the document or register
will not be copied

enaio® Page 13

enaio® editor-for-events Client-Side Events

Reference Time of the Description of the return Event
execution value code
BeforeSaveDocument [Hit list before a document is |0 = the document will be 19
checked in checked in

-2 = the process will be
canceled, the document will
not be checked in

With other return values, the
document will not be checked
in but it will be continued with
the next document.

AfterSaveDocument |Hit list after a document was [no return value 20
checked in

BeforeRestore Hit list before an objectis |0 = the object is not restored |28
restored fromthe ||f other return values are used,
trash can the object is restored.

AfterRestore Hit list after an object is no return value 29
restored from the
trash can

FileDrop Cabinet after storing files at a (-1 = cancellation 200
location 1 = client only updates the hit

list

0 = client takes over the files

The 'OnContextChange' event was used for the contentviewer, a component that
was replaced with the DocumentViewer in version 7.00. Therefore, this event is no
longer required and deactivated in version 7.00 or higher. You can activate this
event by entering a value into the as.cfg configuration file (\etc directory of the
data directory):

[SYSTEM]
ENABLE_CONTEXTCHANGE_EVENT=1

Events for Changes in Batch Mode
The following data sheet events are integrated for changes in batch mode :

Event Event code

BeforeValidate 100
AfterValidate 104
OnShow 101
OnClickltem 102
OnChangeActivePage|103

enaio® Page 14

enaio® editor-for-events

Handoff Files

Handoff files contain an extra section with the following structure:

[BATCHUPDATE]
Count=<number of objects>
IDO=<object 1D>

IDn= ..

Only these events can be deployed for changes in batch mode.

Events for changes in batch mode are added in the workspace using the context
menu of an object type.

Event hinzufiigen

Evert Beschreibung
AfterFinishQueny Aufrf: nachdem eine Guery beendet wurde. Riickgabe: ..
AfterRestore Aufrf: nach dem Wiederherstellen eines Objektes aus de...
AfterSave Document Aufruf: nach dem Senden des Dokuments zum Applikatio...
BeforeDelete Aufraf: bevor ein Objekt geldscht wird. Rickgabe: OK-=o...
BeforeOpen Aufruf: bevor ein Dokument oder Ordner gedffnet wird R..
BeforeRestore Aufruf: nach dem Wiederherstellen eines Objektes aus de...
Before SaveDocument Aufrf: vor dem Senden des Dokuments zum Applikations. ..
BeforeUndoCheckOut Aurfruf: bevor auf einem Dokument Auschecken zunickn...
CnCopy Aufrf: wenn ein Dokument oder Register per Drag & Dro...
OnMove Aufraf: wenn ein Dokument oder Register per Drag & Dro...

Objekttyp
GlobalObject Type Script Ausfruf: Wird an jeden Objekttyp gehangt

| Sammelanderung 1
Before Save Aufrf: vor dem eigentlichen Speichem des Datenblattes ..
OnChangefctive Page Event nicht verfugbar, da die Maske keine PageCortrols ...
OnClickkem Event nicht verfugbar, da die Maske keine Schaltflachen...
OnShow Aufraf: nachdem das Datenblatt gedfinet und mit Werten ...

Server-Events

t JobAfterObject

+ JoblBeforeCbject -

K Abbrechen

In the 'Object search’ area, events for changes in batch mode are flagged with a
lightning symbol.

The function corresponds to those of the events for an object.

Event 'StartAction’

The 'StartAction' event is invoked using the method 'krn.SendMessageToClients'.
The method can be executed using the enaio® enterprise-manager or from scripts
and applications. You can find information about 'krn.SendMessage ToClients' in
the 'enaio® Server API' documentation.

The events are invoked using the 'StartEvent' value of the '‘Message' parameter. The
value of the "Text' parameter is transferred as an event file and can be evaluated by
the script.

Handoff Files

enaio®

enaio® client creates handoff files for events from which data can be read out and
edited and into which return values can be written.

Handoff files receive the file extension *.evt and will be written to the client-side,
user-specific temporary directory \temp\OSTEMP\.

Page 15

enaio® editor-for-events Handoff Files

enaio®

The 'MsgBox filename' code in a script allows outputting the full path and the file
name of the handoff file in a dialog.

You receive read and write access to the handoff files directly via the ActiveX
control oxactive.dl1 (see 'The ActiveX Control OXACTIVE'). Once enaio® client
has read out the required data, the handoff files will be deleted automatically.

Events may require return values to be written to the handoff files, so that enaio®
client can perform the desired action. To do so, insert the following code into the
handoff file:

ResultCode=1
WriteToFile()

The following events will not create any handoff file:
§ AfterLogin

§ OnStartApp

§ AfterFinishQuery

The following events will only create an empty handoff file into which the return
value needed by OS|CLIENT to continue given actions can be entered:

§ BeforeLogout
& OnCloseApp

The following events will create handoff files with data which can be read out and
further edited and into which return values can be entered:

§ OnClickltem

§ OnShow

§ BeforeValidate

§ AfterValidate

§ AfterSave

§ BeforeStartQuery

§ BeforeOpen

§ BeforeDelete

8 AfterDelete

§ OnMove

8 OnMoveExtern

§ OnAddLocation

§ OnCreateCopy

§ BeforeLink

§ BeforeDeleteLink

§ BeforeSaveDocument
§ BeforeUndoCheckOut

Page 16

enaio® editor-for-events Handoff Files

BeforeCancel
BeforeRestore
OnChangeActivePage
OnValueChanged
OnCellValueChanged
BeforeAddRow

BeforeDeleteRow

w W w W W W W

The following events will create handoff files with data which can be read out and
further edited but into which a return value cannot be entered:

AfterLink
AfterDeleteLink
AfterSaveDocument
AfterRestore
OnLeavePage
OnFocusGained
OnCellFocusGained

w W W W W W W

If you use scripts to refer to dialog elements containing special characters, errors
may occur. In this case, use internal names for referring to dialog elements.

Structure of Handoff Files

Since handoff files are text files, they can be opened with any text editor, such as
Notepad.

They contain information on tabs of index forms including their data fields and
contents.

Handoff files are divided into sections which are identified by the page information
indicated in square brackets. The sections represent the tabs on an index form.
Commencing with zero, the pages are numbered sequentially: [PAGEQQ],
[PAGEO1], [PAGEQ2] etc.

enaio® Page 17

enaio® editor-for-events Handoff Files

enaio®

Datenblatt - 2010 - Aufirag X
G‘ wiF-Protakoll EE' Allgemein [1/2] | [ea] Protakol LD Basizparameter [Dok.]
Porzeszhame Auftrag fertig

ProzessiDl | 37ga778

Bemerkung

| Event

jid IQII || @) “g] Speichern | | Abbrechen |

Handoff files additionally include the [GLOBALS] section to which global
information across all sections is saved.

If a page control was added to an index form, the pages of which will contain
individual sub-sections by appending an ID to the page information:

[PAGEOO#BD5D78C3F05A45538A226667DC644C01]
[PAGECTRL#77EEBAE5F6834B20BE5A18F939191C8A]
#NAME#=PageCtrl1l

#OSINTERNNAME#=PageCtrl1l

#PAGENAME1#=Run time

#PAGEOS INTERNNAME1#=Run time
#PAGEGUI1D1#=71134100B5BA43DD94F81CB5A100BDD6
#PAGENAME2#=Reminder

#PAGEOS INTERNNAME2#=Reminder

#PAGEGU ID2#=2C8082795C704EDOA4E79D78410E6GE71

The single pages of the page control can additionally be identified with the keys
#PAGENAME#, #PAGEOSINTERNNAME# and #PAGEGUID#.

A key and a corresponding value are listed in each line, separated by the equals sign:

#OSMAIN#=4
#OSMODIF1ED#=0
#OSF1ELDMODE#=1
FULLTEXT=
VTREQUESTTYPE=0
#OSACT#=1

Type and number of keys in the handoff file depend on the calling context for both
the event as well as the structure of the index form.

Keys may consist of multiple parts which are separated by separators. As a
separator, either the character "\021' or ASCII code '17" must be used.

Page 18

enaio® editor-for-events ‘

enaio®

Handoff Files

Keys of the PAGE Sections

Key Description ‘
#OSACTH# '1' for active tabs on the index form, otherwise ‘0’
#OSEXP# If a search was started in expert mode, the key with the value

1" will be written to the handoff file.

#OSFIELDMODE#

GUID (=1) or position (=0) of the field will be expected and
interpreted

#OSIDENT#

index number of the object

#OSMAIN#

main document type:

'1": X document (grayscale image)

'2". D document (black-and-white image)
‘3" P document (color image)

'4": W-Document (Windows document)
'5": M document (video document)

'6": Q document (e-mails)

'7': XML Document

‘0": Folder

'99": Tabs

#OSMODIFIED#

time stamp denoting the last modification of an object (index
form or document)

#OSNAME# name of the tab on the index form

#OSPOS000# sequentially numbered fields and their contents on the index
form

#OSTYPE# type ID of the object

#OSSYSTEMID#

The ID of the system that manages the object. enaio® servers
always have the OSSYSTEMID '0'.

#OSFOREIGNID#

ID of an object in a third-party system, provided that the
object is also managed in the third-party system.

FELDO sequentially numbered information on the fields of the index
form, separated by separators

FIELDEXTO extension to the field 0, also numbered sequentially

FILECOUNT number of files which are assigned to the object

Keys of the GLOBAL Section

Key

Action

Description ‘

Available values are:

UPDATE - if you have opened a data sheet for editing or
modified data

REQUEST - if you have opened a search form

NEW - if you have opened a data sheet/object to be created

Page 19

enaio® editor-for-events ‘ Handoff Files

Key Description

READ-ONLY - if you have opened a data sheet read-only
BEFORELINK — when the event of the same name is accessed

EventCode numeric 1D of the triggering event, for example '1' for the
‘OnShow' event. For the numeric codes, see the tabular
overview under 'Introduction’

Handle ID of the sizing handle of the index form
Ordldent Internal 1D of the folder

OrdType type of the folder

Regldent internal 1D of the register

RegType type of the register

EXTERNDROPFILE | path to a file which is imported by dragging and dropping

Client-Side Handoff Files

The following example handoff files respectively refer to a document of the 'Log’
type in the 'General’ register in the "Workflow log' folder. Folder, register and
document data which will be found in the corresponding handoff files refer to these
DMS objects and depend on the given event.

Eﬂ "wF-Protokoll

Jahr (==

Prozessfamilie

|u| |B Anfrage starten. .. || Abbrechen |

"Workflow log' folder form

[T Allgemein

Monat

= |& Arfrage starten... || Abbrechen |

'General’ register form

| Protokoll
Porzessname
ProzessiD
Bemerkung

| Ewent |

= |& Anfrage starten.. || Abbrechen |

'Log' document type form

enaio® Page 20

enaio® editor-for-events Handoff Files

enaio®

OnClickltem

The event is triggered once any button of a DMS object's index form is clicked; in
this example: the 'Event’ button of a document of the 'Log’ type.

Having triggered the onClickItem event, enaio® client will create a handoff file
with data on the folder, the register, the document, and on the basic parameters.

The file contains the following sections:

§ [PAGEO(]

This section includes folder data, the indexing of the folder and
the field definition of the folder type.

§ [PAGEO1]

This section includes register data, the indexing of the register and
the field definition of the register type.

§ [PAGE02]

This section includes document data, the indexing of the
document and the field definition of the document type.

§ [PAGEO3]

This section includes data of the basic parameters of the DMS
object which the event is related.

§ [GLOBALS]
This section includes general information.

The numbering of the page sections corresponds to the order according to which
the data sheets are shown from left to right in enaio® client.

Example of the handoff file:

Page 21

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=4

#OSIDENT#=882

#OSMAIN#=0

#OSMODIFIED#=1283779716

#0SPOS000#=2010

#0SP0S001#=Jobs

FILECOUNT=0

FELDO=#0SPOS000#;Year;zahl11;9;4;0;0
FIELDEXTO=#0SP0S000#08B022760BAE042CAB627F8A2945CCYearzahl 1WF_Year94
00

FELD1=#0SP0OS001#;Workflow family;feld1l;X;50;0;0
FIELDEXT1=#0SP0OS001#D70773C5AFDB4894A739C2119093DAA0OWorkFlow
fami lyfeld1WF_Fami lyX5000

#OSNAME#=Workflow log

[PAGEO1]

#OSTYPE#=6488071

#OSIDENT#=883

#OSMAIN#=99

#OSMODIFIED#=1283779767

#OSPOS000#=April

FILECOUNT=0

FELDO=#0SPOS000# ;Month;feldl;X;50;0;0
FIELDEXTO=#0SP0S000#D622CD2C43D3490E87F36AF9ADF660D5Monthfeld1WF_Mon
thX5000

#OSNAME#=General

[PAGEO2]

#OSTYPE#=131115

#OSIDENT#=884

#OSMAIN#=2

#OSMODIFIED#=1326111543

#OSFIELDMODE#=1

#0SGU I D#49B4CEA9BADF49BIA3AEAC193ABC6093=Job incoming
#0SPOS000#=Job incoming

#0SGU I D#DBFOC6B60C5F44A3AB37F92C8BC538A4=new
#0SP0OS001#=new

#0SGU 1 D#C5053863FA2D46B4B19C13BCAOC6D30C=324543
#0SP0S002#=324543

#OSACT#=1

FILECOUNT=0

FELDO=#0SP0OS000# ;Workflow name;feld1;X;50;0;0
FIELDEXTO=#0SPOS000#049B4CEA9BADF49BIA3AEAC193ABC6Workflow
namefeld1WF_ProcessNameX5000
FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000;0;0
FIELDEXT1=#0SPOS001#DBFOC6B60C5F44A3AB37F92C8BC538ACommentfeld2WF_Co
mmentX100000

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000;0;0
FIELDEXT2=#0SP0S002#0C5053863FA2D46B4B19C13BCAOC6D3WorkflowlDfe ld4WF
_Process1dXx100000

FELD3=#0SP0OS003#;Event; ;K;0;0;0
FIELDEXT3=#0SP0OS003#11DF4AIE9AF84A8682340807127406180EventK000
#OSNAME#=Log

#OSFORE IGN I1D#=0

[PAGEO3]

#OSTYPE#=6553600

#O0SIDENT#=884

#OSMAIN#=100

#OSMODIFIED#=0

#0SPOS000#=THOMAS

#0SP0S001#=1280227291

#0SPOS003#=ADMINISTRATOR

#0SP0S004#=1326111543
#0SPOS007#=A402C5EDF25744DBA04A622986E15042

#0OSPOS006#=72

FILECOUNT=0

Page 22

enaio® editor-for-events Handoff Files

[GLOBALS]
EventCode=30
Action=UPDATE
Handle=67004
Ordldent=882
OrdType=4
Regldent=883
RegType=6488071
TargetMainType=-1

If, for example, the onClickltem event is executed from within a search form on
which the search terms 'Incoming jobs' and '324543" have been entered into the
fields "Workflow name' and "WorkflowlID', respectively, the 'Action=REQUEST"
entry will be found in the [GLOBALS] section instead of the 'Action=UPDATE'
entry:

[PAGEOO]

#OSTYPE#=131115

#OSIDENT#=0

#OSMAIN#=2

#OSMODIFIED#=0

#OSF1ELDMODE#=1

#0SGU ID#49B4CEA9BADF49B1A3AEAC193ABC6093=Job incoming
#0SPOS000#=Job incoming

#0SGU ID#DBFOC6B60C5F44A3AB37F92C8BC538A4=new
#0SPOS002#=new

#OSACT#=1

FILECOUNT=0

FELDO=#0SPOS000# ;Workflow name;feldl;X;50;0;0
FIELDEXTO=#0SP0OS000#049B4CEA9BADF49B1A3AEAC193ABC6Workflow
namefeld1lWF_ProcessNameX5000
FELD1=#0SP0S001#;Bemerkung;feld2;X;1000;0;0
FI1ELDEXT1=#0SP0OS001#DDBFOC6B60C5F44A3AB37F92C8BC538Commentfeld2WF_Co
mmentX100000

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000;0;0
FIELDEXT2=#0SP0S002#DC5053863FA2D46B4B19C13BCAOC6D3WorkflowlDfeld4WF
_Process1dX100000

FELD3=#0SP0OS003#;Event; ;K;0;0;0
FI1ELDEXT3=#0SPOS003#D11DF4AIE9AF84A868234080712740618DEventK000
#OSNAME#=Log

[GLOBALS]

EventCode=0

Action=REQUEST

Hand1e=3408762

Ordldent=-1

OrdType=-1

Regldent=-1

RegType=-1

enaio® client requires a return value for the onClickltem event:
8 'resultcode=1" will pass data from the handoff file to the index form,
§8 'resultcode=0" will not modify the data of the index form.

To close the DMS form of a DMS object by script call, use the closedatamask
method in onClickltem. The following return values are available:

g -1 Discard changes and close DMS form
§ 0" (Default) Do not close DMS form
§ T Save changes and close DMS form

The return value must be written explicitly into the handoff file.

enaio® Page 23

enaio® editor-for-events Handoff Files

enaio®

WriteProfString "GLOBALS","closedatamask', " <Return value>",0SFILE
asfile WriteToFile()

The 'Enabled=true’ property can be used to activate a write-protected button on a
data form with an event script or upon an onshow event, to open associated
documents, for example.

An event button that can be activated must exist in the event script and the data
form must have no PageControls.

Example:

if AsFile_EventAction = ""READONLY" then
MsgBox ''try to activate Schaltflaeche"
ActivePage.ASFields. Item("'&Schaltflache'™) .Enabled=true
end IF
ResultCode=1
WriteToFile()
From the event script, instead of the current object, an object can be shown via the

object ID in the content/file preview or dashlet:

asfile._ContextObjldent = ID

OnShow

This event can be triggered either by opening a data sheet or a search form or when
creating a new DMS object.

enaio® client will create a handoff file, for example, with data on the folder
[PAGEQQ], the register [PAGEO1], the document [PAGE02], and on the basic
parameters [PAGEOQ3].

Example of the handoff file:

Page 24

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=4

#OSIDENT#=882

#OSMAIN#=0

#OSMODIFIED#=1283779716

#0SPOS000#=2010

#0SP0S001#=AdHoc V 1.02

FILECOUNT=0

FELDO=#0SPOS000#;Year;zahl11;9;4;0;0
FIELDEXTO=#0SP0OS000#18A1529714954419924950FFFD930FDEYearzahl 1IWF_Year
9400

FELD1=#0SP0OS001#;Workflow family;feld1l;X;50;0;0
FIELDEXT1=#0SP0S001#8B022760BAE042CAB627F8A2945CC044Workflow
fami lyfeld1WF_Fami lyX5000

#OSNAME#=Workflow log

[PAGEO1]

#OSTYPE#=6488071

#OSIDENT#=883

#OSMAIN#=99

#OSMODIFIED#=1283779767

#OSPOS000#=April

FILECOUNT=0

FELDO=#0SPOS000# ;Month;feldl;X;50;0;0
FIELDEXTO=#0SP0S000#D622CD2C43D3490E87F36AF9ADF660D5Monthfeld1WF_Mon
thX5000

#OSNAME#=General

[PAGEO2]

#OSTYPE#=131115

#OSIDENT#=884

#OSMAIN#=2

#OSMODIFIED#=1326113515

#OSFIELDMODE#=1

#0SGU I D#49B4CEA9BADF49BIA3AEAC193ABC6093=Job incoming
#0SPOS000#=Job incoming

#0SGU I D#DBFOC6B60C5F44A3AB37F92C8BC538A4=new

#0SP0OS001#=new

#0SGU 1 D#C5053863FA2D46B4B19C13BCAOC6D30C=324543
#0SP0S002#=324543

#OSACT#=1

FILECOUNT=0

FELDO=#0SP0OS000# ;Workflow name;feld1;X;50;0;0
FIELDEXTO=#0SPOS000#49B4CEA9BADF49BIA3AEAC193ABC6093Workflow
namefeld1WF_ProcessNameX5000
FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000;0;0
FIELDEXT1=#0SP0OS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Commentfeld2WF_C
ommentX100000

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000;0;0
FIELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCAOC6D30CWorkflowlDfeld4w
F_Process1dX100000

FELD3=#0SP0OS003#;Event; ;K;0;0;0
FIELDEXT3=#0SP0OS003#11DF4AIE9AF84A868234080712740618EventK000
#OSNAME#=Log

#OSFORE IGN I1D#=0

[PAGEO3]

#OSTYPE#=6553600

#O0SIDENT#=884

#OSMAIN#=100

#OSMODIFIED#=0

FILECOUNT=0

[GLOBALS]

EventCode=1

Action=UPDATE

Handle=1442014

Ordldent=882

OrdType=4

Page 25

enaio® editor-for-events Handoff Files

enaio®

Regldent=883

RegType=6488071

CANRESETFIELDS=1

CANINSERTFIELDS=1

The onshow event is also triggered by creating a new DMS object. The [GLOBALS]
section will then include the 'Action=NEW" entry. When creating the document by
dragging and dropping, the 'EXTERNDROPFILE' entry will indicate the path to the
file. If the DMS object's search form is opened, the 'Action=REQUEST" entry will
be added. When opening the data sheet in read-only mode, the
'‘Action=READONLY" entry will be added. Scripts which do not take account of
several action modes will lead to errors.

If an object is created by copying, the handoff file contains an additional entry with
the ID of the source object. The entry has the following structure: 'CopyFrom=ID'

If an object from a register is opened, the handoff file contains the location
information. The entry has the following structure:

[GLOBALS]
EventLocationFolderldent=81
EventLocationFolderType=0
EventLocationRegisterldent=293
EventLocationRegisterType=6488065

If an object from a first level folder is opened, the location information contained in
the handoff file has the following structure:

[GLOBALS]

EventLocationFolderldent=81
EventLocationFolderType=0
EventLocationRegisterldent=4294967295
EventLocationRegisterType=4294967295

If an object from a location which is not a folder is opened, the handoff file has the
following structure:

[GLOBALS]
EventLocationFolderldent=4294967295
EventLocationFolderType=4294967295
EventLocationRegisterldent=4294967295
EventLocationRegisterType=4294967295

4294967295 means 'not specified'.

enaio® client requires a return value for the onshow event:
"resultcode=1" will pass data from the handoff file to the index form,
‘resultcode=0" will not modify the data,

‘resultcode=-1" will cancel the opening process of the index form.

The onshow event, for example, allows editing of the 'Dialog element visible'
property:

Page 26

enaio® editor-for-events Handoff Files

enaio®

Activepage.AsFields. Item(*Comment™) .Visible = false
ResultCode=1
WriteToFile()

In the same way, the '‘Enabled=False’ property activates the write-protection of
certain fields.

Write-protected buttons on a data form or for an onShow event can also be
activated with the property to open associated documents, for example.

An event button that can be activated must exist in the event script and the data
form must have no PageControls.

Example:

ifT AsFile_EventAction = "READONLY" then
MsgBox ''try to activate Schaltflaeche"
ActivePage.ASFields. Item("'&Schaltflache'™) .Enabled=true
end IF
ResultCode=1
WriteToFile()

If a data sheet was opened by use of the '‘Quickfinder’ AddOn, the handoff file will
contain the following data in the [GLOBALS] section:

QUICKFINDER=1 Indicates that the data sheet has been opened
by use of the '‘Quickfinder’ AddOn.

QUICKPARENTOBJECT=Object Specifies the 1D of the document type through

type ID which the 'Quickfinder' AddOn has been
executed.

The items 'CANRESETFIELDS=1" and 'CANINSERTFIELDS=1"in [GLOBALS]
section relate to the context menu functions 'Reset' and 'Paste’ on a form. 'Reset’
clears all fields, 'Paste’ inserts copied entries of another object.

For these functions not to be available, set their value to '0". This will disable the
options.

From the event script, instead of the current object, an object can be shown via the
object ID in the content/file preview or dashlet:

asfile.ContextObjldent = ID

BeforeValidate

The event is triggered when the indexing is changed by clicking the 'Save' button on
the index form of a DMS object; in the example: a document of the 'Log' type.
When a newly created DMS object is saved, the event will also be triggered and,
instead of the 'Action=UPDATE' entry, the 'Action=NEW" entry will be added to
the [GLOBALS] section.

enaio® client will create a handoff file with data on the folder [PAGEQ0], the
register [PAGEQ1], the document [PAGE02], and on the basic parameters
[PAGEO3].

Page 27

enaio® editor-for-events Handoff Files

Example of the handoff file:

enaio® Page 28

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=4

#OSIDENT#=882

#OSMAIN#=0

#OSMODIFIED#=1283779767

#0SPOS000#=2010

#0SP0S001#=Jobs

FILECOUNT=0

FELDO=#0SPOS000#;Year;zahl11;9;4;0;0
FIELDEXTO=#0SP0OS000#18A1529714954419924950FFFD930FDEYearzahl 1IWF_Year
9400

FELD1=#0SP0OS001#;Workflow family;feld1l;X;50;0;0
FIELDEXT1=#0SP0S001#8B022760BAE042CAB627F8A2945CC044Workflow
fami lyfeld1WF_Fami lyX5000

#OSNAME#=Workflow log

[PAGEO1]

#OSTYPE#=6488071

#OSIDENT#=883

#OSMAIN#=99

#OSMODIFIED#=1283779767

#OSPOS000#=April

FILECOUNT=0

FELDO=#0SPOS000# ;Month;feldl;X;50;0;0
FIELDEXTO=#0SP0S000#D622CD2C43D3490E87F36AF9ADF660D5Monthfeld1WF_Mon
thX5000

#OSNAME#=General

[PAGEO2]

#OSTYPE#=131115

#OSIDENT#=884

#OSMAIN#=2

#OSMODIFIED#=1326113973

#OSFIELDMODE#=1

#0SGU I D#49B4CEA9BADF49BIA3AEAC193ABC6093=Job incoming
#0SPOS000#=Job incoming

#0SGU I D#DBFOC6B60C5F44A3AB37F92C8BC538A4=new and edited
#0SP0OS001#=new and edited

#0SGU 1 D#C5053863FA2D46B4B19C13BCAOC6D30C=324543
#0SP0S002#=324543

#OSACT#=1

FILECOUNT=1

FELDO=#0SP0OS000# ;Workflow name;feld1;X;50;0;0
FIELDEXTO=#0SPOS000#49B4CEA9BADF49BIA3AEAC193ABC6093Workflow
namefeld1WF_ProcessNameX5000
FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000;0;0
FIELDEXT1=#0SP0OS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Commentfeld2WF_C
ommentX100000

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000;0;0
FIELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCAOC6D30CWorkflowlDfeld4w
F_Process1dX100000

FELD3=#0SP0OS003#;Event; ;K;0;0;0
FIELDEXT3=#0SP0OS003#11DF4AIE9AF84A868234080712740618EventK000
#OSNAME#=Log

#OSFORE IGN I1D#=0

[PAGEO3]

#OSTYPE#=6553600

#O0SIDENT#=884

#OSMAIN#=100

#OSMODIFIED#=0

#0SPOS000#=THOMAS

#0SP0S001#=1280227291

#0SPOS003#=ADMINISTRATOR

#0SP0S004#=1326113973
#0SPOS007#=A402C5EDF25744DBA04A622986E15042

#0OSPOS006#=72

FILECOUNT=0

Page 29

enaio® editor-for-events Handoff Files

enaio®

[GLOBALS]
EventCode=2
Action=UPDATE
Handle=590516
Ordldent=882
OrdType=4
Regldent=883
RegType=6488071
TargetMainType=-1

If an object is created by copying, the handoff file contains an additional entry with
the ID of the source object. The entry has the following structure: ‘CopyFrom=ID’

enaio® client requires a return value for the event;

‘resultcode=1" will save data from the handoff file in the index form.
‘resultcode=0" Data will not be changed.

‘resultcode=-1" will not apply any data and will keep the index form open.

‘resultcode=-2" will pass data from the handoff file to the index form, the index
form with the data changes will remain open in enaio® client.

enaio® client checks the data and, with 'resultcode=1', will leave the index form
open and show respective notices to the user if any data does not fulfill the
requirements.

The catalog check can be switched off. To do so, write the CHECKCATALOGVALUES=0
entry into the [GLOBALS] section:

oxhelp.writeprofstring ""GLOBALS"™, "CHECKCATALOGVALUES™, 0, osfile
Resultcode = 1
WriteToFile()

AfterValidate

The event matches BeforeValidate but is executed after the validity check of
enaio® client.

enaio® client requires a return value for the event:

‘resultcode=1" will save data from the handoff file in the index form without further
validation by enaio® client.

‘resultcode=0" Data will not be changed.

AfterSave

The event will be executed after the data of a data sheet is saved. enaio® client will
not read the data from the handoff file and no return value is expected.

The handoff file includes data on the folder [PAGEQQ], the document [PAGEO1],
and on the basic parameters [PAGEOQ2]. The document is not located in any
register.

Example of the handoff file:

Page 30

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=4

#OSIDENT#=882

#OSMAIN#=0

#OSMODIFIED#=1283779716

#0SPOS000#=2010

#0SP0S001#=Jobs

FILECOUNT=0

FELDO=#0SPOS000#;Year;zahl11;9;4;0;0
FIELDEXTO=#0SP0OS000#18A1529714954419924950FFFD930FDEYearzahl 1IWF_Year
9400

FELD1=#0SP0OS001#;Workflow family;feld1l;X;50;0;0
FIELDEXT1=#0SP0S001#8B022760BAE042CAB627F8A2945CC044Workflow
fami lyfeld1WF_Fami lyX5000

#OSNAME#=Workflow log

[PAGEO1]

#OSTYPE#=6488071

#OSIDENT#=883

#OSMAIN#=99

#OSMODIFIED#=1283779767

#OSPOS000#=April

FILECOUNT=0

FELDO=#0SPOS000# ;Month;feldl;X;50;0;0
FIELDEXTO=#0SP0S000#D622CD2C43D3490E87F36AF9ADF660D5Monthfeld1WF_Mon
thX5000

#OSNAME#=General

[PAGEO2]

#OSTYPE#=131115

#OSIDENT#=884

#OSMAIN#=2

#OSMODIFIED#=1326114350

#OSFIELDMODE#=1

#0SGU I D#49B4CEA9BADF49BIA3AEAC193ABC6093=Job incoming
#0SPOS000#=Job incoming

#0SGU I D#DBFOC6B60C5F44A3AB37F92C8BC538A4=new and edited
#0SP0OS001#=new and edited

#0SGU 1 D#C5053863FA2D46B4B19C13BCAOC6D30C=324543
#0SP0S002#=324543

#OSACT#=1

FILECOUNT=1

FELDO=#0SP0OS000# ;Workflow name;feld1;X;50;0;0
FIELDEXTO=#0SPOS000#49B4CEA9BADF49BIA3AEAC193ABC6093Workflow
namefeld1WF_ProcessNameX5000
FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000;0;0
FIELDEXT1=#0SP0OS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Commentfeld2WF_C
ommentX100000

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000;0;0
FIELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCAOC6D30CWorkflowlDfeld4w
F_Process1dX100000

FELD3=#0SP0OS003#;Event; ;K;0;0;0
FIELDEXT3=#0SP0OS003#11DF4AIE9AF84A868234080712740618EventK000
#OSNAME#=Log

#OSFORE IGN I1D#=0

[PAGEO3]

#OSTYPE#=6553600

#O0SIDENT#=884

#OSMAIN#=100

#OSMODIFIED#=0

#0SPOS000#=THOMAS

#0SP0S001#=1280227291

#0SPOS003#=ADMINISTRATOR

#0SP0S004#=1326114350
#0SPOS007#=A402C5EDF25744DBA04A622986E15042

#0OSPOS006#=72

FILECOUNT=0

Page 31

enaio® editor-for-events Handoff Files

enaio®

[GLOBALS]
EventCode=2
Action=UPDATE
Handle=458922
Ordldent=882
OrdType=4
Regldent=883
RegType=6488071
TargetMainType=-1

BeforeStartQuery

The event will be executed once the 'Start query' function is started from within a
search form. The handoff file includes data on the search forms. This data can be
changed by using the VB script.

enaio® client will pass the data from the handoff file to the search forms and start
the search provided that the 'resultcode=1" entry was written into the handoff file.

‘resultcode=0" will start the search without further modification.
‘resultcode=-1" will cancel the search.

The handoff file includes data on the search forms and entered search terms. In the
example, the search terms '324543' and '2010' have been entered into the fields
‘WorkflowlID' on the search form of the document and 'Year' on the search form
for folders, respectively.

The numbering of the page sections of combined queries corresponds to the order
according to which the data sheets are shown from left to right in enaio® client. The
event is assigned to a DMS object and will only be run if the data sheet of the DMS
object is active when starting the combined query.

Example of the handoff file:

Page 32

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=131115

#OSIDENT#=0

#OSMAIN#=2

#OSMODIFIED#=0

#OSFIELDMODE#=1

#0SGU 1 D#C5053863FA2D46B4B19C13BCAOC6D30C=324543
#0SP0OS002#=324543

#OSACT#=1

FILECOUNT=0

FELDO=#0SP0OS000# ;Workflow name;feld1;X;50;0;0
FIELDEXTO=#0SPOS000#49B4CEA9BADF49BIA3AEAC193ABC6093Workflow
namefeld1WF_ProcessNameX5000
FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000;0;0
FIELDEXT1=#0SPOS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Commentfeld2WF_C
ommentX100000

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000;0;0
FIELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCA0C6D30CWorkflowlDfeld4w
F_Process1dX100000

FELD3=#0SP0OS003#;Event; ;K;0;0;0
FIELDEXT3=#0SP0OS003#11DF4AIE9AF84A868234080712740618EventkK000
#OSNAME#=Log

[PAGEO1]

#OSTYPE#=6488071

#OSIDENT#=884

#OSMAIN#=99

#OSMODIFIED#=1283779716

#OSFIELDMODE#=1

FILECOUNT=0

FELDO=#0SPOS000# ;Month;feld1;X;50;0;0
FIELDEXTO=#0SPOS000#D622CD2C43D3490E87F36AF9ADF660D5Monthfeld1WF_Mon
thX5000

#OSNAME#=General

[PAGEO2]

#OSTYPE#=131115

#OSIDENT#=884

#OSMAIN#=2

#0OSMODIFIED#=1326114350

#OSFIELDMODE#=1

#0SGU 1 D#DDF9D11554884EA6BA217F99189CDF01=2010
#0SPOS000#=2010

FILECOUNT=0

FELDO=#0SPOS000#;Year;zahl11;9;4;0;0
F1ELDEXTO=#0SPOS000#DDF9D11554884EA6BA217F99189CDF01Jahrzahl1WF_Year
9400

FELD1=#0SP0OS001#;Workflow family;feld1l;X;50;0;0
FIELDEXT1=#0SP0OS001#D70773C5AFDB4894A739C2119093DAAOWorkTlow
fami lyfeld1WF_Fami lyX5000

#OSNAME#=Workflow log

[GLOBALS]

EventCode=4

Action=

Hand1e=1905136

Ordldent=-1

OrdType=-1

Regldent=-1

RegType=-1

BeforeOpen

The event will be executed after a document was opened. The handoff file includes
data on the indexing of the document but no further data, such as the basic
parameters.

Page 33

enaio® editor-for-events Handoff Files

enaio®

enaio® client will open the document provided that the ‘resultcode=1' entry was
written to the handoff file.

‘resultcode=0" will not open the document. The document is also not opened
without a return value.

'resultcode=-4' contains the object ID and the object type as the return value. If you
switch between different workflow processes, hit lists, and opened locations, the
document will still be displayed in the DocumentViewer.

Example of the handoff file:

[PAGEOO]

#OSTYPE#=131115

FILECOUNT=1

#0SPOS000#=Job incoming

FELDO=#0SPOS000# ;Workflow name;feldl;X;50
F1ELDEXTO=#0SPOS000#49B4CEA9BADF49BIA3AEAC193ABC6093Prozessnamefeldl
WF_ProcessNameX50

#0SP0OS001#=new and edited

FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000
FIELDEXT1=#0SPOS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Bemerkungfeld2WF
_CommentX1000

#0SP0S002#=324543

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000
F1ELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCAOC6D30CProzesslidfeld4wF
_Process1dXx1000

#OSIDENT#=884

#OSNAME#=Log

[GLOBALS]

EventCode=16

Action=READONLY

Ordldent=882

OrdType=4

Regldent=883

RegType=6488071

CHECKOUT=0

BeforeDelete

The event will be executed after a document, folder, or register was deleted. The
handoff file includes data on the indexing of the DMS object but no further data,
such as the basic parameters.

enaio® client will delete the document provided that the ‘resultcode=1' entry was
written to the handoff file.

‘resultcode=0" will not delete the document.

Example of the handoff file:

Page 34

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=131115

FILECOUNT=1

#0SPOS000#=Job incoming

FELDO=#0SPOS000# ;Workflow name;feldl;X;50
FIELDEXTO=#0SP0OS000#49B4CEA9BADF49BIA3AEAC193ABC6093Workflow
namefeld1WF_ProcessNameX50

#0SPOS001#=copied

FELD1=#0SP0S001#;Bemerkung;feld2;X; 1000
FIELDEXT1=#0SP0OS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Commentfeld2WF _C
ommentX1000

#0SP0OS002#=324543

FELD2=#0SP0S002# ;WorkflowlD;feld4 ;X ;1000
FIELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCA0C6D30CWorkflowlDfeld4w
F_Process1dX1000

#OSIDENT#=2189

#OSNAME#=Log

[GLOBALS]

EventCode=11

Ordldent=0

OrdType=4

BeforeUndoCheckOut

The event will be executed after the checkout of one or more documents was
undone. The handoff file includes data on the indexing of the document but no
further data, such as the basic parameters.

‘resultcode=1" will undo the checkout without user confirmation.

enaio® client will undo the checkout of the document provided that the
‘resultcode=0" entry was written to the handoff file.

If more than one document is selected, 'resultcode=-1" will not undo the checkout
of these documents.

‘resultcode=-2" will not undo the checkout of the current document.

The 'NumberOfSelectedDocuments' constant can be used to query in the script for
how many documents the checkout has been undone.

Example of the handoff file:

Page 35

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=131115

FILECOUNT=1

#0SPOS000#=Job incoming

FELDO=#0SPOS000# ;Workflow name;feldl;X;50
FIELDEXTO=#0SP0OS000#49B4CEA9BADF49BIA3AEAC193ABC6093Workflow
namefeld1WF_ProcessNameX50

FELD1=#0SP0OS001#;Bemerkung; feld2;X;1000
FIELDEXT1=#0SPOS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Commentfeld2WF_C
ommentX1000

#0SP0OS002#=324543

FELD2=#0SP0S002# ;WorkflowlD;feld4;X;1000
FIELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCAOC6D30CWorkFflowlDfeld4w
F_Process1dX1000

#OSIDENT#=2189

#OSNAME#=Log

[GLOBALS]

EventCode=27

Ordldent=882

OrdType=4

Regldent=883

RegType=6488071

AfterDelete

The event will be executed after a document, folder, or register was deleted. The
handoff file includes data on the indexing of the DMS object but no further data,
such as the basic parameters.

enaio® client will create the handoff file and run the VB script but will not read the
data from the handoff file.

Example of the handoff file:

[PAGEOO]

#OSTYPE#=4

FILECOUNT=0

#0SP0OS000#=2010

FELDO=#0SPOS000#;Year;zahl1;9;4
FIELDEXTO=#0SP0OS000#18A1529714954419924950FFFD930FDEYearzahl 1IWF_Year
9400

FELD1=#0SP0OS001#;Workflow family;feldl;X;50
FIELDEXT1=#0SP0S001#8B022760BAE042CAB627F8A2945CC044Workflow
fami lyfeld1WF_Fami lyX5000

#OSIDENT#=1805

#OSNAME#=Workflow log

[GLOBALS]

EventCode=12

OnMove

The event will be executed when moving a DMS object within a cabinet to another
location. The handoff file includes data on the indexing of the DMS object.

The [MOVEINFOY] section will include information on the source and target
location. A VB script may be used, for example, in order to check and change the
target location.

8 SOURCEINFO
SOURCEINFO=FolderlID,FolderType,RegisterlID,RegisterType

8 DESTINFO
DESTINFO=FolderID,RegisterlID

Page 36

enaio® editor-for-events Handoff Files

enaio®

The object will be moved according to the data in the handoff file provided that the
‘resultcode=1" entry was written to the handoff file.

‘resultcode=-1" will not move the document.

Example of the handoff file:

[PAGEOO]

#OSTYPE#=131115

FILECOUNT=1

#0SPOS000#=Job incoming

FELDO=#0SPOS000# ;Workflow name;feldl;X;50
F1ELDEXTO=#0SPOS000#49B4CEA9BADF49BIA3AEAC193ABC6093Prozessnamefeldl
WF_ProcessNameX50

#0SPOS001#=new order January

FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000
FI1ELDEXT1=#0SP0OS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Bemerkungfeld2WF
_CommentX1000

#0SP0S002#=334543

FELD2=#0SP0S002# ;WorkflowlD;feld4 ;X ;1000
FI1ELDEXT2=#0SP0OS002#C5053863FA2D46B4B19C13BCAOCE6D30CProzesslidfeld4wF
_Process1dXx1000

#OSIDENT#=2196

#OSNAME#=Log

[GLOBALS]

EventCode=17

Ordldent=2190

OrdType=4

Regldent=0

RegType=0

[MOVEINFOQO]

SOURCEINF0=2190,4,0,0

DESTINF0=2190,2193

DESTINF02=2190,2193,6488071

OnMoveExtern

The event will be executed when moving a DMS object to another cabinet. The
handoff file includes data on the indexing of the DMS object and matches the event
‘OnMove'.

OnAddLocation

The event will be executed when a register or document receives another location
via drag & drop.

The handoff file includes data on the indexing of the DMS object.

The [COPYINFQ] section will include information on the source and target
location. A VB script may be used, for example, in order to check and change the
target location.

§ SOURCEINFO
SOURCEINFO=Folder1D,FolderType,RegisterlID,RegisterType

8 DESTINFO
DESTINFO=FolderID,RegisterlID

A location is added with the data from the handoff file, provided that the
‘resultcode=1" entry was written to the handoff file.

‘resultcode=-1' does not add a location.

Page 37

enaio® editor-for-events Handoff Files

enaio®

Example of the handoff file:

[PAGEOO]

#OSTYPE#=131115

FILECOUNT=1

#0SPOS000#=0order processing

FELDO=#0SPOS000# ;Workflow name;feldl;X;50
F1ELDEXTO=#0SPOS000#49B4CEA9BADF49BI1A3AEAC193ABC6093Workflow
namefeld1WF_ProcessNameX50

#0SPOS001#=order will now be processed further
FELD1=#0SP0OS001#;Bemerkung;feld2;X;1000
FI1ELDEXT1=#0SPOS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Commentfeld2WF_C
ommentxX1000

#0SP0S002#=3345439

FELD2=#0SP0S002# ;WorkflowlD;feld4 ;X ;1000
FI1ELDEXT2=#0SP0OS002#C5053863FA2D46B4B19C13BCAOCE6D30CWorkflowlDfeld4w
F_Process1dXx1000

#OSIDENT#=2197

#OSNAME#=Log

[GLOBALS]

EventCode=18

Ordldent=2190

OrdType=4

Regldent=2194

RegType=6488071

[COPYINFOQO]

SOURCEINF0=2190,4,2194,6488071

DESTINF0=2190,2195

DESTINF02=2190,2195,6488071

OnCreateCopy

The event will be executed when a register or document is copied. The handoff file
includes data on the indexing of the DMS object and matches the event
‘OnAddLocation’.

BeforeLink

The event will be executed when creating a relation or a link through the notes
window or the notes area of a folder window.

The handoff file includes the data on the indexing of both DMS objects in the
sections [PAGEOQ] and [PAGEO1].

In the [GLOBALS] section the referenced objects are specified as follows:

[GLOBALS]
EventCode=21
Action=BEFOREL INK
LINKOBJECTID1=1868
LINKOBJECTTYPE1=4
LINKOBJECTID2=1808
LINKOBJECTTYPE2=4

If relations were created, the relation data would be specified as well.
‘resultcode=2" will not create the relation and the relation dialog will close.

For relations, 'resultcode=1" will not create the relation but the relation dialog will
not be closed either.

Page 38

enaio® editor-for-events Handoff Files

enaio®

Links and relations will be created provided that the 'resultcode=0" entry was
written to the handoff file.

For links, every non-zero value will cancel the process. The link will not be created.

BeforeDeleteLink

The event will be executed when deleting a relation or a link through the notes
window or the notes area of a folder window.

The handoff file corresponds to the one which is created by the '‘BeforeLink' event.

Links and relations will be deleted provided that the ‘resultcode=0' entry was
written to the handoff file.

Other values will cancel the process and the link or relation will not be deleted.

AfterLink

The event will be executed after a link or relation was created.

The handoff file corresponds to the one which is created by the '‘BeforeLink' event.
enaio® client will not return any data.

AfterDeleteLink
The event will be executed after a link or relation was deleted.

The handoff file corresponds to the one which is created by the '‘BeforeLink' event.
enaio® client will not read any data from the handoff file.

BeforeSaveDocument
The event will be executed before a document is checked in.

Checked out documents will also be checked in when enaio® client is exited. The
event will also be executed.

In the [PAGEQQ] section the handoff file includes the indexing data of the
document. The name and path of the document files in the local cache area of the
workstation are specified as well.

Example:
FILEO=. . . \LOKALE~1\TEMP\OSTEMP\00000791\CACHE\03\11\2D\00000C2D .000
FILE1=. . _\LOKALE~1\TEMP\OSTEMP\00000791\CACHE\03\11\2D\00000C2D.001

The [GLOBALS] section additionally includes the ID and the type of both the
folder and the register.

The document will be checked in, provided that the 'resultcode=0' entry was
written to the handoff file.

‘resultcode=-2" will cancel the process.

With other return values, the current document will not be checked in but it will be
continued with the next document.

Page 39

enaio® editor-for-events Handoff Files

enaio®

AfterSaveDocument
The event will be executed after a document is checked in.

The handoff file corresponds to the one which is created by the
'‘BeforeSaveDocument' event. It neither includes the names nor the paths of the
document files; if the file was transferred by dragging and dropping, the source path
to this file is indicated as a value of the 'EXTERNDROPFILE' entry in the handoff
file.

enaio® client will not read the data from the handoff file.

BeforeCancel

The event is triggered by clicking on the Cancel button on a non-write-protected
data sheet.

The handoff file corresponds to the one which is created by the 'OnShow' event.
Set 'resultcode’ to '0' to have the data sheet kept open.

With other return values the data sheet will be closed.

BeforeRestore

The event is triggered by selecting an object from the trash can and clicking the
Restore button.

‘resultcode=0" will have the restoring process canceled.
With all other return values the object will be restored.

The handoff file includes a 'Page’ section with the object's data. The 'Global’ section
may specify the folder and register of the former filing location through the ID.

Example of the handoff file:

[PAGEOO]

#OSTYPE#=131115

FILECOUNT=1

#0SPOS000#=Job incoming

FELDO=#0SPOS000# ;Workflow name;feldl;X;50
FIELDEXTO=#0SPOS000#49B4CEA9BADF49B1A3AEAC193ABC6093Prozessnamefeldl
WF_ProcessNameX50

#0SP0OS001#=not archived

FELD1=#0SP0OS001#;Bemerkung; feld2;X;1000
FIELDEXT1=#0SPOS001#DBFOC6B60C5F44A3AB37F92C8BC538A4Bemerkungfeld2WF
_ CommentX1000#0SP0S002#=3827982

FELD2=#0SP0S002# ;WorkflowlD;feld4;X ;1000
FIELDEXT2=#0SP0S002#C5053863FA2D46B4B19C13BCAOC6D30CProzesslidfel d4WF
_Process1dXx1000

#OSIDENT#=888

#OSNAME#=Log

[GLOBALS]

EventCode=28

Ordldent=882

OrdType=4

Regldent=883

RegType=6488071

AfterRestore
The event is triggered as soon as an object is restored from the trash can.

Page 40

enaio® editor-for-events Handoff Files

The handoff file corresponds to the one which is created by the '‘BeforeRestore'
event.

Return values are ignored.

OnChangeActivePage

The event will be executed after another page of the ‘Page control’ dialog element
was activated.

Values will not be returned. When switching to a search form, the [Globals] section
will include the Action=REQUEST entry, whereas when switching to a data sheet, it
will include the Action=UPDATE entry.

The following extract shows the general structure of the handoff file:

enaio® Page 41

enaio® editor-for-events Handoff Files

enaio®

[PAGEOO]

#OSTYPE#=3

#OSIDENT#=0

#OSMAIN#=0

#OSMODIFIED#=0

#OSFIELDMODE#=1

FULLTEXT=

VTREQUESTTYPE=0

#OSACT#=1

FILECOUNT=0

FELDO=#0SPOS000# ; SUPFEST ; feld22;X;3;0;1
FIELDEXTO=#0SP0OS000#12DD22481B2C45848E5BCOCDE959F271SUPFESTfeld22SUP
FESTX301

FELD1=#0SP0OS001#;PageCtrl27;;C;0;0;0
FIELDEXT1=#0SP0OS001#65DD459E62BE4DE99932ED6EA9753438PageCtr127C000
#OSNAME#=Customer

[PAGEOO#BD5D78C3F05A45538A226667DC644C01]

#OSTYPE#=3

#0OSFI1ELDMODE#=1

#0SGU I D#6BE24A2D207F48FF8CD7965EB840035C=

#0OSPOS000#=

#0SGU 1 D#821A6F059F02418F875FB6F2D3496694=

#0SPOS001#=

#0SGU 1D#173CFBCFBF244B03B0645B005F11F5E0=

#0OSP0OS002#=

#0SGU 1D#910C438E76534801B66C12DDDDF73353=

#0OSPOS003#=

#0SGU 1D#7C68B08185704C1DB1AD7C88B17CF529=

#0OSP0OS004+#=

#0SGU I D#58FCCDA78AA44B6093B8B2940531E835=

#0OSPOS005#=

#0SGU 1 D#8914CE6CE13942D3A6BCFFC6DF1627C2=

#0OSPOS006#=

#OSGU I1D#BD1779FB5DD7496C9A79F91EF4A71517=

#OSPOS007#=

#0SGU I D#CE5DFE7C5006443BBC2EOACF994890AC=

#0OSP0OS008#=

#0SGU I D#AAS08EFBA7F04905A48092E30FF92403=

#OSPOS009#=

#0SGU I D#EFDS8FBAF228241BF983E4F1973375CE7=

#OSPOS010#=

#0SGU I D#6FBFBCO1EBAC406A8A048997F3C33351=

#OSPOS011#=

#OSACT#=0

#OSENABLED#=1

#F1ELDPOS#=#0SP0OS001#

#OSNAME#=Customer data

FELDO=#0SPOS000# ;Company name;feldl;X;60;0;0
FIELDEXTO=#0SPOS000#6BE24A2D207F48FF8CD7965EB840035CFirmennamefeldl1C
ompany namexX6000

FELD1=#0SP0OS001#;Additional ;feld2;X;60;0;0
FIELDEXT1=#0SP0OS001#821A6F059F02418F875FB6F2D3496694Zusatzfeld2Addit
ionalX6000

FELD2=#0SP0OS002#;Street;feld3;X;40;0;0
FIELDEXT2=#0SP0S002#173CFBCFBF244B03B0645B005F11F5EO0Strallefeld3Stree
tX4000

FELD3=#0SP0S003#;Land;feld4;A;3;0;0
FIELDEXT3=#0SP0OS003#910C438E76534801B66C12DDDDF73353Landfeld4LandA30
0

FELD4=#0SP0S004#;Zip code;feld5;Z;5;0;0
FIELDEXT4=#0SP0S004#7C68B08185704C1DB1AD7C88B17CF529PLZfeld5PLZZ500
FELD5=#0SP0OS005#;City;feld6;X;30;0;0
FIELDEXT5=#0SPOS005#58FCCDA78AA44B6093B8B2940531E8350rtfeld60rtX3000
FELD6=#0SP0OS006#;State;feld7;X;50;0;0

Page 42

enaio® editor-for-events Handoff Files

enaio®

FIELDEXT6=#0SP0OS006#8914CE6CE13942D3A6BCFFC6DF1627C2Bundeslandfeld7B
undeslandX5000

FELD7=#0SP0OS007#;Phone;feld8;X;20;0;0
FIELDEXT7=#0SP0OS007#BD1779FB5DD7496COA79F91EF4A71517Telefonfeld8Phon
eX2000

FELD8=#0SP0S008#; Fax;feld9;X;20;0;0
FIELDEXT8=#0SPOS008#CE5DFE7C5006443BBC2EOACF994890ACFaxfeld9FaxX2000
FELD9=#0SPOS009# ;E-Mail ;feld10;X;80;0;0
FIELDEXT9=#0SPOS0O09#AA808EFBA7F04905A48092E30FF92403E-Mai I feld10E-
Mail_addressX8000

FELD10=#0SP0S010#; Internet;feldl11;X;80;0;0
FIELDEXT10=#0SPOSO10#EFD8FBAF228241BF983E4F1973375CE7 Internetfeldlill
nternetx8000

FELD11=#0SP0S011#;Class;feld29;X;30;0;0
FIELDEXT11=#0SP0S011#6FBFBCO1EBAC406A8A048997F3C33351Klassefeld29Cla
ssX3000

[PAGEOO#BD85F472CDF646CC82245ECCF4D03EBE]

#OSTYPE#=3

#0OSFI1ELDMODE#=1

#0SGU 1D#328DD5567B05420893A94090FAE565B0=

#0OSPOS000#=

#0SGU 1 D#53A47363F74D4BCD8C944EBD502BE725=

#0SPOS001#=

#0SGU I D#EF5B3ACFA2FF418A98048CBECFB2F337=

#0OSP0OS002#=

#0SGU I D#2ED784B358B04467A969EBBCC1995ADC=

#0OSPOS003#=

#0SGU 1 D#0003EDBB81654525A9638298CCC4F546=

#0OSP0OS004+#=

#0SGU I D#9A2D322CEA694684A0AC210B0O5F6B848=

#0OSPOS005#=

#0SGU 1 D#9504BB059BDB419AAFCF5EC49F59BFOB=

#0OSPOS006#=

#0SGU 1 D#136F0270745A4BE480EE8B9DB0OCD4376E=

#OSPOS007#=

#OSACT#=1

#OSENABLED#=1

#F1ELDPOS#=#0SP0OS001#

#OSNAME#=Description

FELDO=#0SP0OS000#; Industry;feld15;X;20;0;0
FIELDEXTO=#0SP0OS000#328DD5567B05420893A94090FAE565B0Branchefeld15Bra
ncheX2000

FELD1=#0SP0OS001#;0rigin;feld16;X;20;0;0

The #0SACT#=1 entry indicates the active page.

The PAGEQO, into which the page control was inserted, will be divided into the
defined pages of the page control which will receive an individual ID:

§ [PAGE00#BD5D78C3F05A45538A226667DC644C01]
§ [PAGE00#BD85F472CDF646CC82245ECCFADO3EBE]
§

FileDrop
The event is executed after storing files at a location via drag & drop.

'resultcode=-1" cancels the action and does not adopt any files.
‘resultCode=1" will only refresh the hit list.

‘resultcode=0" will store the specified data in the handoff file via enaio® client.

Page 43

enaio® editor-for-events Handoff Files

enaio®

Example of the handoff file:

[GLOBALS]

EventCode=200

Ordldent=673

OrdType=3

Regldent=967

RegType=6488070

[FILES]

COUNT=2
FILE1=C:\Users\thomas\Documents\Auftragsbest.tif
FILE2=C:\Users\thomas\Documents\Schreiben.tif

Handoff Data of Tables

Data contained in tables of index forms will be written to the handoff file as follows:

[object751istl]

ZEILEO={1234Verkauf567842,13333,522}
ZEILEDBO="1234","Sales","5678","42,13%,"3","33,5", 722"
ZEILE1={5678Verkauf356432,673,545,233}

ZEILEDB1="5678", "Verkauf*®,b"3564","32,67","3,5","45,2","33"
REQFIELDS=Ffeld1X50,feld2X50,feld3X5,feld4X20,feld5X10,feld6X20,feld7?
X20

FIELDS=feldl,feld2,feld3, feld4,feld5, feld6, feld7

[LISTCONTROL]

TABLES=object75listl

Table of the example file:

~ Tablel

Line | Einteilung = Furktion | Anzahl Listenpreiz Rabatt Einzelpreiz Betrag
1 1234 Verkauf BESS 4273 3 335 22

Table of the example file with a selection catalog:

~ Tablel

Line Einteilung = Funktion = Anzahl Listenpreis = Rabatt = Einzelpreis = Betrag
1 1234 Werkauf BEVE 4213 3 + 335 22

Example of a modification (writing the values of the first line of the table):

Page 44

enaio® editor-for-events The ActiveX Control OXACTIVE.DLL

a = "{1.Wert" & chr(17) & "2_.Wert" & chr(17) & "3.Wert" & chr(17) _
& "4 .Wert" & chr(17) & "5.Wert" & chr(17) & "6.Wert" & chr(17) _

& "7 ._Wert}"

oxhelp.writeprofstring "object75listl", '"zeile0", a, osfile

These modifications will be written provided that the 'resultcode=1" entry was
written to the handoff file.

The ActiveX Control OXACTIVE.DLL

The ActiveX control oxactive.dl1 offers methods and objects that allow reading
and editing data of the handoff file and the configuration file.

During the installation of enaio®, the control will be installed and registered
automatically.

Through the VB Script AddOn, the control can be directly used in the VB script
editor. In other environments, the ActiveX control oxactive.dll is integrated as
follows:
CoxHelp Interface in support of the VB script programming
Object creation on VBScript:
Dim x
Set x = CreateObject("oxactive.CoxHelp®)

Methods

GetProfString()

HRESULT GetProfString(BSTR bstrSec, BSTR bstrKey, BSTR bstrDefault,
VARIANT* pvarReturn, BSTR bstrFile)

This function provides the functionality of the Windows API function
GetPrivateProfileString

Input: BSTR bstrSec the section name in the handoff file
BSTR bstrKey the key name in this section
BSTR bstrDefault default return value if no value can be

determined

BSTR bstrFile file name of the handoff file

Output: VARIANT™* determines key value as string
pVarReturn

Example:

oxhelp.GetProfString ""PAGEOOQ",""#OSEXP#",-1,rvalue,osfile

If the value cannot be determined, the value of the '#OSEXP#' key in the 'Page00’
section is written to the 'rvalue’ variable, otherwise -1,

enaio® Page 45

enaio® editor-for-events The ActiveX Control OXACTIVE.DLL

WriteProfString()

HRESULT WriteProfString(BSTR bstrSection, BSTR bstrKey, BSTR
bstrvalue, BSTR bstrFile)

This function provides the functionality of the Windows API function
WritePrivateProfileString.
Input: BSTR bstrSection the section name in the handoff file
BSTR bstrKey the key name in the handoff file
BSTR bstrvalue the key value
BSTR bstrFile path and file name of the handoff file
Output; -

Before the oxhelp.WriteProfString() method can be used, the WriteToFile()
method must be called.

ExtractString()

HRESULT ExtractString(BSTR strVal, VARIANT* pFieldName, VARIANT*
pFieldValue)

This function helps to divide the string into two parts. As a separator, either the
character "\021' or ASCII code '17' must be used.

Input: BSTR strval the string which is meant to be separated into
two parts
Output: VARIANT* left part of the string until the separator
pFieldName
VARIANT™* right part of the string from the separator
pFieldValue
WinExec()

HRESULT WinExec(BSTR strFile, BSTR strParams)
This function allows starting the application and passing the parameter.

Input: BSTR strFile file name of the application
BSTR strParams command line parameter
Output: -

Objects

The ActiveX control oxactive.dl1 offers the following objects:
§ ASFile Object: allows access to the AddOn or the event's handoff file

§ RequestPages object: comprises all registers of an index form (collection
of RequestPage objects)

§ RequestPage Object: a single data sheet

8 ActivePage object: is a RequestPage object, i.e. a link to the active data
sheet

enaio® Page 46

enaio® editor-for-events The ActiveX Control OXACTIVE.DLL

§ ASFields Object: comprises all fields of an index form (collection of all
ASField objects)

8 ASField Obiject: a single field of a form
These objects are used to read and edit the data of the handoff file.

Example:

Datenblatt - 2010 - 1 x
Eﬂ wF-Protokall E_j Basisparameter [Ord.)
dabe o010 ==

Prozesstamilie | H5CHEN

e = |[E] speichier | | Abbrechen |

The value of the "Jahr' field (year) can be read with one of the two following
methods:

ActivePage.ASFields. Item("'Year™) .Value

RequestPages. Item("Workflow log'™).ASFields.ltem(*'Year'™) .Value

Method a) will read the field through the ActivePage object; method b) through the
RequestPages collection.

ASFile Object

The ASFile object allows for access to the AddOn or the event's handoff file. This
handoff file contains information on the index form.

Properties:
L — read access only

S — write access only

L/S —read and write access

ActivePage provides a RequestPage object of the currently active data L
sheet
AddonFields for AddOns only L

Provides a collection of ASField objects which are
connected to the AddOn. The first element is exactly the
field to which the AddOn button is assigned. The other
elements of the collection allow accessing all fields which
are connected with the AddOn.

ErrorMessage |n connection with the 'ASField.IsErrorField’ property, an L/S
error text for both events 'BeforeValidate' and
'‘OnltemClick’ can be specified, which will then be shown in
an info window. A prerequisite is that the ResultCode is not

enaio® Page 47

enaio® editor-for-events

enaio®

The ActiveX Control OXACTIVE.DLL

0 (see Example 4).
EventAction Only for events. L
Available values are:
NEW — a new object will be created
UPDATE - a given object will be modified
REQUEST - a search will be performed
READONLY - a given object is open in read-only mode.
EventCode Returns the numerical EventCode (see 'Client-Side Events'). L
Filename name of the file which is meant to be used including the full L/S
path, usually the file name of the corresponding handoff file
FOLDERID returns the 1D of the folder in which the object is located L
FOLDERTYPE returns the numeric folder type L
Handle handle of the index form L
IsErrorField specifies whether or not this field is flagged as invalid on the L/S
index form
REGISTERID returns the 1D of the register in which the object is located L
REGISTERTYPE returns the numeric register type L
RequestPages Collection of RequestPage objects of all data sheetsonthe L
current index form.
ResultCode Only for events. L/S
All changes will apply if the value is set to '1".
Default value: ‘0’
TARGETMAINTYPE reads and writes the main document type. L/S
Methods:

WriteToFile() Returns all objects and properties to the handoff file. The file

Return values:
10" - file does not exist
11" - no file name specified

RequestPages Object
This object gives access to a collection of RequestPage objects.

Properties:

L — read access only

S —write access only

L/S — read and write access

name is provided by the Filename property.

Count number of elements in this collection L

Page 48

enaio® editor-for-events The ActiveX Control OXACTIVE.DLL

Methods:

1tem(VARIANT Provides an element of this collection

I'tem) Parameter:
I'tem — either the index or the name of the intended element
can be specified here.

RequestPage Object

This object gives access to a single data sheet of the index form.

Properties:
L — read access only

S —write access only

L/S — read and write access

Active '1" if this page is on top, otherwise '0’ L
ASFields ASField collection of all fields on this page L
FileCount Number of files that belong to a document L

1D ID of the object L
Name name of the data sheet L
ObjectType Object type of this page L

ASFields Object
This object represents a collection of ASField objects.

Properties:
L — read access only

S — write access only
L/S —read and write access

Count number of elements in this collection L

Methods:

1tem(VARIANT provides an element of this collection
I'tem) Parameter:

I'tem — either the index or the name of the intended element
can be specified here.

ASField Object
This object gives access to a single field of a search form.

Properties:
L — read access only

enaio® Page 49

enaio® editor-for-events

enaio®

The ActiveX Control OXACTIVE.DLL

S — write access only

L/S — read and write access

CtrlPages
DBName
Enabled

GUID
InternalName

IsErrorField

Length
Name
Type
Value

Visible

Collection of all registers of a page control.
Name of the field in the database

if set to FALSE, the respective field on the form is write
protected

returns the GUID of the respective field on the form
the internal name of the respective field on the form

specifies whether this field of the form is flagged as invalid
(yellow) on the index form ('TRUE") or not ("FALSE")

(see Example 4)

Max. length of the field

name of the field

data type of the field (see below)

value of the field

if set to FALSE, the respective field on the form is hidden

Available data types:

Decimal numbers DECIMAL
0 Check boxes SHORT

1 Radio button SHORT

9 Numbers INTEGER
A all characters without numbers | CHAR

C Page control CHAR

D Date DATE

G Uppercase letters CHAR

I Full text index INTEGER
L all characters CHAR

M all characters CHAR

P Patient type CHAR

Q yes/no CHAR

S male/female CHAR

T Left/right CHAR

W | Table element CHAR

X all characters CHAR

Z only numbers CHAR

Page 50

L/S

L/S
L/S

enaio® editor-for-events The ActiveX Control OXACTIVE.DLL

enaio®

Examples of Use in VBScript

If, in enaio® client, the aforementioned objects are used through an event or the VB
Script add-on, neither the ASFile object nor the CoxHelp object need to be created
explicitly. Furthermore, the 'Filename' property of the ASFile object will be set
automatically.

Example 1
Output the names of all data sheets:

for b = 0 to RequestPages.Count-1
MsgBox(RequestPages. Item(b) .Name)
Next

Example 2

Output all field names of the currently active data sheet as well as change the

content of a field for an event:

for b = 0 to ActivePage.ASFields.Count-1
MsgBox(ActivePage.ASFields. Item(b) .Name)

Next

ActivePage.ASFields. Item(1).Value = "new value*

ResultCode = 1

WriteToFile()

Example 3

Output the name of the AddOn field as well as its content in the data sheet and
then change the content of the AddOn field:

MsgBox (AddonFields.ltem(0)._-Name + * = " +

AddonFields.1tem(0) .Value)

AddonFields.1tem(0).Value = "new value*
WriteToFile()

Example 4

Highlight a data sheet's field on a page control in color and activate the respective
page and output an error message in the form of a tooltip for the 'OnClickltem’ or
'‘BeforeValidate' event:

ActivePage.ASFields("'PageCtri') .CtriPages(2).Fields.Item(2).IsErrorF
ield = true

ErrorMessage = "Invalid entry, please correct.”

ResultCode = -1

WriteToFile()

Example 5

Distinguish whether a query has been performed in expert mode or not by reading
the #OSEXP# key of the handoff file:

Page 51

enaio® editor-for-events Server-Side Events

oxhelp.GetProfString "PAGEOOQ","#OSEXP#",-1,rvalue,osfile
if (rvalue = "1") then
"Code for expert mode
else
"Code for non-expert mode
end If

Server-Side Events

enaio®

Server-side events are scripts which are assigned to server jobs. An assigned VB
script can be executed before and after a server job is performed.

There are two types of server events which can be integrated:

§ KernelDrivenEvents (KDE (KDE)

KernelDrivenEvents can be called before or after a job is executed.
Before and after job execution, all input and return parameters can
be changed by the script, respectively.

§ JobDrivenEvents (JDE)

By contrast, JDEs allow that the event can to a great extent use the
job's business logic without the need to implement the business
logic anew.

The first implemented JDE, which was delivered together with
enaio®, is part of the DoArchive job (archiving of object types). In
the context of object-related scenarios, KDES are of no use as the
job iterates all documents to be archived of an object type in an
internal loop. If the KDE is in spite of that executed, it would have
to implement this logic (only the 'Object type' parameter would be
passed) and several validity checks by itself.

The JDE in the DoArchive job can be used, for example, to
additionally archive the rendition of a document which so far has
been available in the WORK area.

For the purpose of a legally compliant and audit-proof long-term
archive, this event will be available every time less suited file
formats (.doc, .xIs) — amongst others when utilizing DMS features
—are meant to be saved as PDF files in the archive.

Server events, such as object and application events, are created through the '‘Object
search' area of enaio® client.

To integrate KDEs, select the Common events item in the '‘Object search' area and
click on the Add event item in the context menu. Choose the job, which is
designated to have its input parameters edited by a script, from the
KernelBeforeJob job list and the job, which is designated to have its return
parameters edited, from the KernelAfterJob job list. The script is created or
imported by using the editor window.

To integrate JDEs, select an object type in the 'Object search' area and click on the
Add event item in the context menu. Choose the intended job from the job list in
the Server events area.

Page 52

enaio® editor-for-events Server-Side Events

The job list is grouped according to the following namespaces:

Namespace Description ‘

abn functions used to set up and control subscriptions (notification if
document inventory was changed)

adm administrative jobs (functions used to administer system files and a
few configuration tasks at the server)

ado Database access via ADO

chv conversion of image files

dms Jobs used to query and edit index data, DMS objects, relations, and
portfolios while taking account of the security system

dtr Server-side execution of the data transfer server

krn kernel jobs (functions related to administration, licensing, session
management, engine administration, and internal control)

mng Jobs used to administer groups and users of enaio®

std DMS jobs and archiving (WORK, cache, file, and archive
administration)

tst test executor

vix processing full text queries of enaio® client

wfm Processing and managing workflow processes and models

The documentation on server jobs will be supplied upon request.

The following JobDrivenEvents are available additionally:
8§ OnSessionLogin

This event may be used to log login attempts.
8 OnObjectHistoryEntry

This event may be used to generally monitor all relevant changes
made to objects.

Server Events for the Archiving Process

In terms of audit-proof archiving, the following events are available for server
events:

§ BeforeOpenMedia
During an archiving process, before writing to a medium.
The name and the number of the medium will be returned.
§ BeforeStartArchiveBatch

After the number of documents to be archived was calculated but
before the archiving process begins.

enaio® Page 53

enaio® editor-for-events Server-Side Scripts

The name and the number of the object type as well as the number
of documents to be archived will be returned.

§ OnCloseMedia

After the archiving on a medium within an archiving process was
completed.

The name and the number of the medium will be returned.
§ OnFinishArchiveBatch
After an archiving process was completed.

The name and the number of the object type as well as the number
of successfully/defectively archived documents and statistical data
from the report file will be returned.

§ OnFinishMedia

After a medium was finally finished. That is in case of errors, if
there is no more free space or if blocked space is the only storage
space still free.

The name and the number of the medium will be returned.

According to the context, the return values 'BreakJob' (cancel job) and
'‘BreakMedium' (do not use medium) may be available.

Server-Side Scripts

enaio®

Scripts which are run on the server, may need to access the server's kernel objects.
For this purpose, the server provides the ‘running context' (RC) object in the script.
If not defined otherwise by the JobDrivenEvents, the variable instance reads 'RC'.
The different jobs in JobDrivenEvents may furthermore provide proprietary
objects. These will separately appear in the documentation of the respective job.
The kind of how these objects are provided depends on the job.

Script Development

All kernel objects are assigned to the running context and, opposed to objects
which are added by the job itself, will never be seen directly in the global namespace
of the script. These jobs may be visible in the global namespace. Anyhow, the kernel
objects are additionally assigned to the running context. Kernel objects thus differ
from job-specific objects because kernel objects will only be visible through the
running context and never directly, whereas job-specific objects will always be
visible through the running context and maybe directly as variables. The running
context additionally allows accessing job-specific objects.

There are two ways to access the objects through the running context thanks to the
'Item’ property, for example either 'RC.Item("SessionData") or 'RC.SessionData’
(separated from the RC).

The first way accepts names and numbers. The object number can be passed as a
parameter to the 'Item’ property: RC.ltem(2).

Page 54

enaio® editor-for-events Server-Side Scripts

enaio®

The 'RC.Count’ property permits to determine the total number of objects in the
RC. Kernel objects will always be listed behind all job-specific objects, i.e. the
numbering changes for each call.

RC

In addition to all objects, the running context has the ‘GUIAvailable’ property
which can be used to determine from within the script whether the script allows
GUI calls and the '"NewlJobsParams' method; the latter may be used to create a new
instance of the parameter list due to which jobs can be run.

The third method of the RC is 'IncludeFile(BSTR FileName)' which is used to
separate large scripts into multiple scripts.

Another RC property is 'UseNewDB'. It is used to control whether jobs can be
called in a transaction or whether they receive an extra transaction context.

Objects
The following kernel objects of the first level are available:

SessionData,
ServerData,
General,
Logger,
Jobs,

Actions,

w W W W W W W

Registry.

Each object will be described in the following.

SessionData

This object provides information about the user account in the context of which
the script will be run. The following properties are currently available:

Name Description

SessGUID | GUID of the client session
UserName | User name

StatName | Name of the enaio® client computer

InstName | Name of the program to which the user has logged on
UserGUID | GUID of the user
StatGUID | GUID of the enaio® client station

This is not a MAC address but the GUID of the data record in the
database.

UserlD User ID
Supervisor | The supervisor flag from the user table of the user

LangID Language ID from the user table of the user

Page 55

enaio® editor-for-events Server-Side Scripts

ServerData

This object provides different configuration data from the runtime environment of
the server. The following properties are currently available:

Name Description

DataDir | Path to the data area of the server group

RootDir | Path through which the server was started

TempDir | Path to the ostemp directory of the server

ConfDir | Path to the etc directory of the server group

UserDir | Path to the user directory of the server group

Service Name of the service

LogDir Path to the log directory into which the server saves its logs

Connect | Computer name and TCP port, separated by the hash character '#

ServerID | ID of the server

GrouplD | ID of the server group

General

This object provides some general information on the job. The following properties
are currently available:

Name Description

JobNumber | Number of the job, sequentially numbered since server start

ThreadlD ID of the thread in which the job is currently performed

Logger

This object allows for logging within the kernel context. The script may also keep its
own log by directly addressing the oxrpt.dl1 library via COM. In doing so, an
individual configuration is used. The script may alternatively log through the logger
object. The logger object provides the following methods:

Name Description

Flow Flow log on level 5

FlowEx Level and script location can be defined

Info Flow log with facility 'informational’ on level 3
InfoEx Like info, the script location can be defined

Warning Flow log with facility 'warning' on level 3

WarningEx | Like warning, the script location can be defined

Error Error log with facility ‘error' on level 0

errorex Like error, the script location can be defined

enaio® Page 56

enaio® editor-for-events Server-Side Scripts

enaio®

The call of a log entry will appear in the log as 'SCRIPT: [...]" text, while the passed
text is logged in the square brackets. According to the called method, the entry will
appear as 'Flow', 'Info’, "Warning', or 'Error".

All methods have a "Text' parameter which represents the actual log entry and,
dependent on the method, further parameters:

Flow(BSTR Text);

Warning(BSTR Text);

Info(BSTR Text);

Error(BSTR Text);

FIowEx(BSTR Text, UINT Level, BSTR Function, UINT Line);
WarningEx(BSTR Text, BSTR Function, UINT Line);

INnfoExX(BSTR Text, BSTR Function, UINT Line);

ErrorEx(BSTR Text, BSTR Function, UINT Line);

The "Flow' method logs on level 5, the methods 'Info’ and "Warning' use level 3, and

the 'Error’ method logs on level 0.

Jobs

This object allows for the execution of several server jobs. The jobs are run
synchronously, i.e. the calling method will exactly be returned when the job is
finished, no matter if it was successful or not. A job call may look like this:

Dim Prmln
Dim PrmOut

Set PrmIn = RC.NewJobsParams
Set PrmOut = RC.NewJobsParams

AW NP

5 PrmIn.Clear(Q)

6 PrmIn.Value(*'Flags'™) = 0

7 res = RC.Jobs._krn._GetNextIndex(Prmln,PrmOut)

8 if res = 0 then

9 MsgBox(’krn.GetNextIndex succeeded: " & Nextlndex)
“On parameter determination see the next chapter.

10 else
11 MsgBox("'’krn.GetNextlIndex failed: " & res)
12 end if

13 PrmOut.Clear()

In the lines 1 to 4, two objects are created which serve as input and output
parameters of the job. These objects cannot only be used for one but for a number
of jobs. Elements can be added and queried but not deleted separately. Therefore,
the 'Clear' method is introduced as it will clear the list (line 5 to 13). The list can
consequently be filled with input parameters. The property, which represents the
respective parameter, is named 'Value' of which the argument is the parameter
name. The type of the parameter will be analyzed, thereby creating an XMLRPC
parameter with the same type. 'BSTR' will be converted to "XMLRPC string'.
Different 'Integer values' become "XMLRPC integer' and 'BOOL' becomes
'XMLRPC boolean'. The present version does not support other "XMLRPC types'.

Afterwards, the call is performed as follows:
RC.Jobs.namespace. jobname(in-list,out-list)

Here, 'namespace’ is the name of an executor or namespace (three characters as
usual) which is followed by the job name. The job call returns an integer value
which usually is set back to '0" if the job was successful. This value represents
‘dwResult' which returns the actual job function. If problems occur which prevent

Page 57

enaio® editor-for-events Server-Side Scripts

enaio®

the job from being executed (e.g. an exception or either the job or the namespace is
unknown), instead of passing a return value, a COM exception will be generated. If
the 'Job.krn.MylJob' call returns without triggering a COM exception, it can be
assumed that MyJob has been executed; and if, for example, it returns the value '-1',
this value is passed for sure by the job function and not by the kernel.

In order to pass files to the job, another parameter must be added. This parameter
is called JobFiles$ and is a string. It consists of file names which are separated by
semicolons.

After return, output parameters can be interpreted; in the example they are located
in the 'PrmOut’ list of output parameters. Naturally, the parameter names must be
known. The output files are obtained by analyzing and splitting the job.

In doing so, note that a question mark may be prepended to each file name. This
will be the case if the job has created temporary files in the ostemp directory, e.g.
when decrypting a file from the WORK directory into the ostemp directory.

If there is no question mark prepended to the file name, it is not a temporary file
and has not been filed in the CACHE or WORK directory either.

If, for example, a non-existing variable is queried, the parameter is consequently
not returned; the variable has neither been initialized and has the type 'VT-
EMPTY". The 'IsEmpty" function can be used to check it in the script. Job names
and names and types of job parameters are described in the server API
documentation.

If BASE64 parameters are meant to be passed to the job or to be read out of the job,
consult the following section on 'Parameters'. If, for example, the DOM variable is
an MSXML.DOMDocument object into which an XML was loaded, the command

PrmIn.Value("Buffer") = Dom

is used to assign an input parameter of the type BASE64 to the job. Vice versa, an
output parameter can be read out as follows:

B64Result = PrmOut.Value("Result™)
Dom.load(B64Result)

When calling a job at the server and passing the $$$Server ID$$$ parameter to it,
this job is forwarded to the transferring server and executed. For security reasons,
this process is only available if the job is called in a script at the server via RC.

Actions

This object allows for the execution of functions which are implemented by the
kernel itself. The following methods are currently available:

Name Description

SendMail Sends an e-mail which contains the addresses of recipient and
sender, subject, text, and list of files.

SendAdminMail | Sends an e-mail to the administrator provided that his e-mail

Page 58

enaio® editor-for-events Server-Side Scripts

enaio®

address has been specified in the registry.

StreamReset Clears an IStream.

The list of file names is a semicolon-separated string. The methods have the
following parameters:

SendMail (BSTR To, BSTR From, BSTR Subject, BSTR Text, BSTR Files);
SendAdminMai I (BSTR From, BSTR Subject, BSTR Text, BSTR Files);
StreamReset (VARIANT stream); // VARIANT is of type IStream or BYREF
| VARIANT and then IStream

Registry

This object allows reading elements out of and writing elements to the server
registry. The following properties are available:

Name | Description

Item | This property can be read and written to, and has a parameter of the
'BSTR' type which represents the full path to the element. The element's
value has also the 'BSTR' type.

The path to the element begins with the current scheme. For example, the
'‘ComString’ element, which is located under the current scheme, is accessed as
follows: RC.Registry("ComString™).

The 'Schema' element, which is located under the 'DataBase’ key, is accessed as
follows: 'RC.Registry("DataBase\Schema™). Take account of the case-sensitivity of
the entry.

Parameters

Several parameters can be passed to the script. Likewise, the parameters can be
returned after the script's execution.

Page 59

enaio® editor-for-events Server-Side Scripts

Dim InputNames
InputNames = RC. InputParams.Names
MsgBox(*'Input params: " & InputNames)

Dim NameArray
NameArray = Split(InputNames,';",-1,1)
MsgBox(*'VarType((NameArray) = " & VarType(NameArray))

Dim sMsg, i, sName
Dim Param
for 1 = LBound(NameArray) to UBound(NameArray)
sName = NameArray(i)
if (Ien(sName) > 0) then
Param = RC.InputParams.Value(sName)
if (IsEmpty(Param)) then
sMsg = sMsg & '"Parameter ™ & sName & ' not found

else
sMsg = sMsg & sName
sMsg = sMsg & "' "
sMsg = sMsg & Param
end IFf
sMsg = sMsg & vbCrLf
end IFf
next
MsgBox(sMsg)

RC.OutputParams.Value('hallo™) = "Welt"

Both objects 'RC.InputParams' and 'RC.OutputParams' enable working with
parameters. The 'Names' property returns the names of all listed parameters,
separating them by semicolon. The "Value' property enables reading and writing the
parameter.

A particular case of script execution is the execution of scripts of
KernelDrivenEvents. The KDE's will be run before and after the job. Therefore,
they must access the job parameters. This is ensured due to the variables
'InputParams' and 'OutputParams'. In the Before script of a KDE, all parameters
are provided to the script as input parameters. After the script's execution, this list
of input parameters will entirely replace the parameter list of the original job
because single parameters can be removed from the list, as well. The After script of
a KDE provides all input parameters of the job (or the Before script) as well as all
output parameters. Afterwards, the output parameters can be manipulated. In
contrast to the Before script, output parameters will not be entirely replaced but the
values of available parameters will be modified.

The values of parameters can be queried and edited as described above, except for
parameters of the 'BASE64' type. The latter require another procedure as they are
represented as IStreams. The script can pass IStreams only to those interfaces that
are capable of identifying IStreams, for example an XMLDOMDocument because
the 'msxml’ implementation allows loading XML from IStreams. A DOM may
subsequently be again saved to an IStream. However, the IStream must be cleared
first as the content of the 'DOMDocument" will be added to it. The
'RC.Actions.StreamReset(param)' can be used for this purpose.

enaio® Page 60

enaio® editor-for-events Server-Side Scripts

Files

The running context provides methods which allow passing file lists to the script
and getting them back.

The 'RC.InputFiles' can be used to read out the file list from within the script which
the script has received as an input list.

The 'RC.OutputFiles' can be used to define the output list of files in the script.
Example: RC.OutputFiles = "c:\temp\1.txt;c:\temp\2.txt"

File names must be separated by semicolon.

RunScript

The 'krn.RunScript' job allows testing the described functionality. It can be
additionally used for administrative purposes, such as the frequent execution of
particular scripts.

The 'RunScript’ job requires the following parameters:

Name ‘ Type Description

Flags Integer | A value of '1' will not remove the files which were passed to
2 the job.

Script String Text of the script. Provided that the parameter is an empty
@ string, it will be checked whether at least one file is received

with the job. If not, an error will be returned. If yes, the file
content will be used as the script text. Subsequent to the job,
all incoming files will be deleted provided that 'Flags' has a

value of '0".
GUI Boolean | Will be forwarded as "oGUIAvailable' to the performer. A
3) value of '0" will deactivate the option to show a message box.

Vice versa, a value of '1" activates the option unless it has
been generally disabled in the registry.

CtxName | String Name of the running context under which it is made visible

@ in the script. If this parameter is empty, the name 'RC" will
be used.
Main String Name of the function to be carried out by the script; may be
(€D) empty as well. If the parameters is missing, ‘Main' will be
used as the function.
Eval Boolean | Specifies whether or not the script text represents an
3 expression.

After job execution, the return value of the script function (the function is called
'Main' if the '‘Main' job parameter is empty) which was executed on the server's side
will be returned as '$ScriptResult$' return value (of the data type string).

Example:

enaio® Page 61

enaio® editor-for-events

Set oServer = CreateObject("OxSvrSpt.Server™)

set oSession = oServer.Login('<User>" , "<PWD>" ,

"<Port>")

sScript= _

"Function Main" & vbcrlf & _
"Main=now" & VbCrLF & _

"End Function"

MsgBox _
"Local time: " & vbTab & now & vbCrLf &
"~server time: " & vbTab & _

RunScript(oSession, sScript), vblnformation, _
"Time difference local/server"

Function RunScript(oSession, sScript)
set oJob = oSession.NewJob(*'krn_RunScript'™)

Global Scripts

""'<Server>",

oJob. InputParameters.AddNewStringParameter "Script', sScript
oJob. InputParameters.AddNewStringParameter *'CtxName', "
oJob. InputParameters.AddNewlntegerParameter "Flags"™, O

oJob. InputParameters.AddNewBooleanParameter "GUI"™, O

oJob. InputParameters.AddNewBooleanParameter "Eval', O

oJob.Execute

RunScript = oJob.OutputParameters('$ScriptResult$'™).Value

End Function

The following message box will be returned as the result:

»

Zeitdifferenz lokalfserver

i Lokale 2eit: 17.02.2012 10:26:44
~ 05| Server Zeit: 17.02.2012 10:26:46

o4

To pass a parameter list to the script, further optional parameters can be passed to
the job. These parameters must differ from normal job parameters by having other
names than available for this job. What is more, the names and values must be

separated as follows upon execution:

Name Type Description

$SP_1 name$ | String (1) | name of the first script parameter

$SP_1 value$ | Random | value of the first script parameter

SP_xx_name | String (1) | name of the last script parameter

SP_xx_value | Random | value of the last script parameter

These parameters have to be numbered sequentially.

Global Scripts

Global scripts are used to provide constants, subprograms and functions. It is
possible to set up both a global client script and a global server script.

enaio®

Before execution, data of the global client script will always be added to the scripts
of client events, whereas data of the global server script will always be added to the

script of server events.

Page 62

enaio® editor-for-events Global Scripts

enaio®

A global object type script can also be created for each object type. Data are stored
there which are only used for this object type. You can set up object type scripts
using the context menu of an object type in the 'Object search’ area.

Due to this organization, maintenance and administration of script code is
significantly simplified.

Select the Common events item in the workspace and click on the Add event item
in the context menu.

Event hinzufiigen

Event Beschreibung

Application
AfterDeletelink Aufnif: nach dem Léschen zweier vedinkter Objelde.
BeforeDeleteLink Aufruf: vor dem Loschen zweier verlinkter Objekte.
BeforeLink Aufrf: vor dem Verdinken zweier Objekte.
BeforelLogout Aufrdf: bever sich der Mutzer ausloggt. Rickgabe: wenn O,
i GlobalCliert Script Aufrf: Wird an jedes andere Clientscript angehangen.
COnClogefpp Aufnif: bever der Client geschlossen wird.
CnContextChanged Aufrif: nachdem ein Eirtrag in einer Trefferiste ausgewahl. ..
CnStartApp Aufnif: nachdem der Client fertig initialisiert ist.

Server-Events
BeforeStartArchive Batch

4 KemelAfterob

*+ KemelBeforeJob
OnArchiveEmor
OnCloseMedia
OnFinishArchive Batch
OnFinishMedia
Onlnitialize Medium
COnObjectHistory Entry

OK Abbrechen

Either select the GlobalClientScript or the GlobalServerScript and confirm with
OK.

The editor window will open. The script can be edited.

The executable script code which may be contained in a global script will be carried
out at every corresponding event. If the result of run script code is ‘false’, a still
pending job will not be executed.

Example of event script code related to a GlobalClientScript:

MsgBox TextForString
useGlobalScript

Sub useGlobalScript
Dim ret
call globalHello
ret = Dummy(*'String from calling Fct')
MsgBox
End Sub

Example of the corresponding GlobalClientScript:

Page 63

enaio® editor-for-events Controlling the Info Window

const TextString = "String from global script”
const TextForDummy = "Function successfully executed Input="

Sub globalHello()
MsgBox'*Hello from global script”
End Sub

Function Dummy (text)
Dummy = TextForDummy + text
End Function

Controlling the Info Window

enaio®

Next to the 'Object search' area and the search bar, a third window is available in
enaio® client: the info window. This window cannot be designed by the user but
only administratively with events.

An URL or an HTML string is passed to the info window. It has a COM interface
which can be addressed under the name 'Infowindow' from within every event
script.

The following properties and methods are implemented in the interface:

Property Description ‘
ID unique 1D of the window
Visible specifies whether the window is visible
Caption text in the title bar of the window
URL indicates the URL which is currently shown or to be shown
Closeable specifies if the window can be closed by the user
EnableContextMenu | specifies whether the context menu of the Internet Explorer

Is meant to be shown
HtmlIDocument specifies the current HTML document

Method Description

ShowHtmI(String displays the handed over HTML string in the window

html)

Refresh() updates the view

GoBack() corresponds to the 'Back’ button in the Internet Explorer

GoForward() corresponds to the 'Forward' button in the Internet
Explorer

Page 64

enaio® editor-for-events Event Administration

Event Administration

enaio®

You can set whether and for which users events are executed in enaio® client. In
enaio® webclient, events are always executed for all users.

Todo S0, open the General enaio Allgemeine enaio Konfiguration

Conflguratlon dlalog bOX by CIICkIng Start] Datenbank] Zusatze] LDAP-Korfiguration] Dokumente]

the Entire System button in the Events l‘.“a‘ebveneichnis] Druckkennzeichnung] Motizen]
ribbon. Start:

If, on the Events tab, you select the Everts im Clent skdivieren

Option Enable events In Cllent, events Beifolgenden Benutzem die Events nicht ausfihren:

will be executed for all users who are Name

not entered in the user list.

If you disable this option, the events
are only executed for the users that
are entered in the user list.

By clicking the Add button the user
list can be created.

Hinzufiigen Entfermen

Abbrechen Hife:

After having modified events, other users must restart enaio® client or update the
events by pressing the keyboard shortcut Shift+Ctrl+F5 in order to apply all
changes.

The query behavior of integrated scripts must be configured with enaio®
administrator.

Page 65

enaio® editor-for-events

enaio®

When activating the option Always
include objects without register
assignment on the Entire
system/Database tab, documents
without register assignment, i.e.
which are not located in a register,
are also exported, whenever register
and document data are queried.

This setting will not have any effect as
long as the query behavior is specified
in the script itself.

Event Administration

Allgemeine enaio Konfiguration

Events | Webverzeichnis] Druckkennzeichnung] Notizen]
Start Datenbank lZusénze] LDAP-Konfiguration] Dokumente]

Datenbank (Serversinstellungen)

DSM: oedb-1014156

Benutzer:

Parser: oxtrodbe dll
Eingtellungen

Umlautprifung: [ein / aus

Verschlagwortung
[Sicherheitsabfrage

Basisparameter
Recherche zulassen

Benutzemamen
Sonderzeichen zulassen

Anfrageverhalten
[] Objekte ohne Registerzuordnung immer einbeziehen

oK Abbrechen Hife:

For searches in enaio® client, users can configure the query behavior in the '‘Query
behavior' area of their user-specific personal settings dialog.

Page 66

enaio® editor-for-events ‘ enaio® editor-for-events — Introduction

enalo® editor-for-events

enalo® editor-for-events — Introduction

enaio® editor-for-events is used to assign a script to a DMS object and an event and
to save the event in the database.

enaio® editor-for-events is an integral part of enaio® client. Given that a user is
provided with all necessary system roles and licenses, the corresponding functions
are activated in enaio® client.

To test events, enable the debug mode of enaio® client (see 'Debugging'.).

Follow these steps to create events:

§
§
§
§

Select a DMS object or enaio® client from the 'Object search' area,
Select an event,
Insert the script code,

And save the event to the database.

The event will be subsequently executed for all administrated users (see Event
Administration') who restart enaio® client or update the security system by
pressing the keyboard shortcut Shift+Ctrl+Fb5.

Creating Events

Access to these functions can be configured in the Settings area.

enaio®

Page 67

enaio® editor-for-events

Creating Events

Einstellungen

Felder
Anmerkungen
Arbeitsbereich
Ergebnisfenster
Anfrageverhalten
Besttigen
Auto-...

Weitere
Eingangskarbe
Menikonfiguration

Laufiistenvarlagen verwalten

FWeitere

¥ MAPI beim Programmstart initialisieren™
Ubertragungsgeschwindigkeit von Dokumenten ermitteln
W 05-Dateien schreibgeschiitzt 6ffnen
| E-Mail mit Outlook versenden
¥|nach OCR Datenblatt dffnen
OCR mit automatischer Spaltenanalyse
Scaneinstellungen rechnerunabhéngig ablegen
Mur aktuelle Benachrichtungen im Abo anzeigen

Eigene Benachrichtigungen im Abo ausblenden

<

Events anzeigen

<

Applikationsevents debuggen

Workflowevents debuggen

Ordner im Desktop-Bereich als Standardordner (bernehmen
Benachrichtigung fur Wiedervorlage anzeigen
Benachrichtigung fiir Abonnement anzeigen
Benachrichtigung fur Workflow anzeigen

Beim Offnen von 0S-Dateien gedfnete Fenster schlisfien

* Einstellungen werden erst nach dem nachsten Start dieses
Programms aktiv.

OK | Abbrechen |

Enable the option Show events in the More section to access the functions in the
workspace of enaio® client. Set up events will be displayed there.

At the top in the 'Object search' area, the Common

. . Objektsuche
events entry will be shown. All events which are .
triggered by logging in and out of enaio® client or = Annlllrnjnnrnn
starting and exiting the client will be listed. 4 = algemeine Events
. . BeforeLink
Other events are triggered by actions related to DMS GlobalClientSeript
objects and are thus assigned to these object types ™ GlobalWebClientscript

within the tree structure.

EE Server-side events

=+ Client-side events

i]
%= Webclient-side event

~El Client-side change events in batch mode

How to create an event:

§ Select the Common events entry or a DMS object.

§ Select the Add event entry from the context menu.

The Add event dialog will open.

enaio®

Page 68

enaio® editor-for-events

§
§

Importing Scripts

Event hinzufligen x Event hinzufligen x
Datenblatt - Application -
AfterSave] afterDeletsLink]
EBeforeCancel AfterLink
BeforeSave AfterLogin
OnChangeactivePage BeforeDeletelink
OnClickItem BeforeLink
OnShat BeforelLogout
Anfrage | Globallient Script |
BeforestartQuery I onClosespp 7
Trefferliste OnContextChanged
AfterDelete OnSkartApp
AfterFinishQuery Server-Events
AfterRestore BeforeOpentedia
AfterSaveDocument BeforeStartarchiveBatch
EeforeDelste +)- KernelafterJob
BeforeOpen I +)- KernelBeforeJob I
BeforeRestore OnérchiveError
BeforeSaveDocument OnCloseMedia
onCopy - CnFinisharchiveBatch -
Abbrechen Abbrechen

It will list all those events which can be assigned, either object-
related, application-related or server events.

Select the desired event by double-clicking on it.
The editor window will open.

7 Applikations-Event - BeforeL.. X I
EIRIcERS A REaR 7EAEREEED W

I

Enter the VB script into the editor window.

Click on the El Save script button.

The event will be stored in the database.

Each event can only be assigned to an object once.

If you use scripts to refer to dialog elements containing special characters, errors
may occur. In this case, use internal names for referring to dialog elements.

Importing Scripts

The events written by OPTIMAL SYSTEMS will be provided as files in encrypted
format which can be imported, either assigned to a DMS object or an application,
and saved to the database.

enaio®

It is also possible to import and save single events as encrypted files in
enaio® editor-for-events.

Unencrypted files cannot be imported.

How to import an event:

§
§

Select the Common events entry or a DMS object.

Select the Import event entry from the context menu.

Page 69

enaio® editor-for-events The Editor Window

§ Select the file using the file selection dialog.
Encrypted event files have the file extension 'evc'.

The event will be shown in the workspace and the editor window
will open showing the VB script.

User will be notified if the name of the assigned DMS object does not correspond to
the name of the DMS object in the event file.

§ Click the El Save script button in the editor window.

The event will be stored in the database.

The Editor Window

When creating an event, the VB script is inserted into and edited in the editor
window. When importing an event, the VB script is displayed in the editor window
in unencrypted format.

When opening an event from the database, date, time and name of the user who
has most recently modified the script will be shown in the status bar.

.7 Applikations-Event - BeforeL.. X l

H B EE - RARBEAR 7FAYE D00 s
or b = 0 to ActivePage.hSFields.Count = 1
X (ActivePage.RSFields.Itew (k) .Name

ePage.ASFields.Item (1) .Value = 'neusr Wert'
Code = 1

WriteToFile ()

The toolbar of the editor window offers the following buttons:

I Save script
Saves the script to the database (CTRL-S).
m Import script
Imports a script from a file.
|j Export script
Exports the script to a file.
|J- Encoded export
Exports the current script in encoded form to a file.
] Cut
Qﬁa Cuts out the selected text.
@ Copy
Copies the selected text into the clipboard.
Paste
Pastes the text from the clipboard into the current cursor position.
ﬁ Undo
Undoes the last action.

enaio®

Page 70

enaio® editor-for-events ‘ The Editor Window

enaio®

i Restore

Restores the previous version after the action has been undone.

ﬁhﬁ‘i Find
- Enters a search term and a search direction.
@ Down

Find the next result of the searched expression in the text.

Up

Find the previous result of the searched expression in the text.

Replace

Enter a search term and a term that the search term will be replaced with.
Bookmark on/off

Adds a bookmark to the currently selected line or removes it.

Next bookmark

Switches to the next bookmark.

Previous bookmark

: 4
-

Switches to the previous bookmark.
Delete all bookmarks

§ ¥ N &2

¥ Deletes all bookmarks.
4 | Decrease indent
Decreases the indent of the selected lines.
| Increase indent
Increases the indent of the selected lines.
: d Comment out block
Comments out the selected lines.
E;L'| Remove comments for block
Removes comments for the selected lines.
5 Syntax check
Starts the syntax check.

Most of these features are also available from the context menu.
With Ctrl+G you can specify the line number you want to go to.

enaio® editor-for-events supports Intellisense: having entered an object name and
pressed the period key, a context menu will open showing all methods and
properties of the object:

Page 71

enaio® editor-for-events Export/Import

ASFile.
Ly i ctivePage
B fddonFields
ey ErrorMessage
E&! EventAction
E& EventCode
E&! Filename
E&! FolderiD
E& Folder Type
E& Handle
E& ReqgisterID =

Export/Import

enaio®

The editor window may be used to import and export single scripts (as well in
encrypted form).

The 'Object search' area of enaio® client can be used to export and import events.
Script files exported this way are given the file extension *.evc.

When selecting a user name in the 'Object search' area, the context menu will offer
both Event export and Event import functions.

TlEvents exportieren JEvents importieren

Exportdatei | enladministrator. YMOS-1004Desktopexport. aml | | Importdatei | enlAdministrakor, YMOS-1001Deskkoplexport. xml | |
= 7 allgemeine Events = ' allgemeine Events
5 Kerneldfterdob::skd, StoreInwiork 3 kKerneldfterJob:istd, Storelniwork
= KernelBeforelob::std.DeleteObject 3 KernelBeforelob::std, DeleteObject
% GlobalServerscript % GlobalServerscript
7 AfterLink 7 AfterLink
=-[#][} Adressen =[] [} Adressen
= Adressen =[] [} Adressen

7 AfterSave

oK | abbrechen | oK | abbrechen |

The event export creates a number of files: the assignments of object type and script
are saved in an XML file. The actual scripts are encrypted and individually exported
as *.evc files into the same directory.

Select the events to be exported and confirm the selection by clicking OK.

For the event import select the XML file containing the assignments and specify
which events are meant to be imported. The scripts must be located in the same
directory as the XML file.

Users will be notified if scripts have already been assigned to the object types and
can decide if they want to overwrite them.

Page 72

enaio® editor-for-events Debugging

Debugging
To test events, activate the debug mode in enaio® client. Events are not executed in
debug mode; instead the event editor will open the script of the respective activity.

The script can be then executed step by step, whereas current variable values will be
displayed and values can be changed.

The script cannot be edited in debug mode.

In addition to application-related and object-related events, scripts, which are
integrated in a workflow process, can be opened in the event editor and performed
step by step.

The debug mode for application-related events is activated in the Settings area. To
do so, activate the option Debug application events in the More section.

The debug mode for single object types is Optionen a
enabled in the Options dialog which is —
opened through the context menu. crenertyp -

Dokumenttyp:

Select the Debug events item.

[+#|Zvents debuggen
[#|Indexdaten fiir internen Versand verwenden
[[indexdaten zwischenspeichern

To test workflow scripts in debug mode, open the Settings area and activate the
option Debug workflow events in the More section.

Provided that the debug mode is active, a confirmation dialog will open once a
respective event is triggered.

Event AFTERLOGIN

Der Debugmodus ist momentan aktiviert. Machten Sie das Script
debuggen?

Ja Mein Abbrechen

Click Yes to confirm the debug mode, click No to let the event be executed or click
Cancel to continue without the event.

When confirming the debug mode, the script will open.

enaio® Page 73

enaio® editor-for-events Debugging

v Event ONSHOW [Anhalten] - =X

E Datei Bearbeiten Debug
HEEE -0 haphbah 759 4 do

A Filensme = 03File

chinsgBox filename

SHSet oServer = CreateChiject ("OxSvrIpt.lerwver™)

=l=et ofession = oferver.Login("ADMIMNIZSTRATCR™, "optimal®™, "10.1.4.87", "c0l0'™)

B &lvs

Script =

Function Main” & vbeorlf & _

=lMHain=now"” & vhCrLf &

slIf"End Function™

S M=gBox

il "Lokale Zeit: " & vhTab & now & vhOrLf &
sl e 0% Server Zedit: " &£ vhTab &

Zeitdifferenz lokal/server™

unction REunSeript (oSession, sScript)

set odJob = oSession.NewdJob("krn.RunScript™)

oJob . InputParameters. AddilevitringParasweter "Icript™, sScript
oJob . InputParameters. LddNev3itringParaweter "CtxName", "
oJob . InputParameters. lddievIntegerParameter "Flags™, O
oJob. InputParameters. LddNevBoo leanParamecer "GUI™, 0O

oJokb . InputParameters. AddewBoo leanParsmeter "Ewal®™, O
odJob . Execute

FunScript = odJob.OutputParameters("i3criptResulti™) .Value

“ 3 End Function

i 3

¥ariableniiberwachung

Variable Werk - e
Infowindow ...}

Application 4.} £

CxHelp E
ASFile {.} H
[+ MrtSeesinon 4.4 | L i
Bereit | Zeile1, Spaltei i

In debug mode, the window is divided into three areas: the script, Variable
monitoring, and Direct window areas.

The Variable monitoring area provides all variables, objects, and values which are
available in the current script. The data cannot be edited.

The Direct window can be used to check expressions and change variable values:
§ Enter an expression and confirm with Enter to verify the expression.

§ Assign a value to the variable and confirm this with Shift+Enter to
change the value of the variable.

Test the event script with the following buttons:

F9 Breakpoint on/off

42

F5 Start debugging until the next breakpoint or until the end

Shift F5 Exit debugging

F8 Jump to call or function

]

SKoEZX Bk FK

Shift F8 Execute next command in one step

Ctrl Shift F8 Step back, jump out of the function

B Sk

enaio® Page 74

enaio® editor-for-events Debugging

Press the key combination Ctrl+B to open the Breakpoints dialog in which all
defined breakpoints will be listed.

enaio® Page 75

enaio® editor-for-events

Index

A

Administration 65
AfterDelete 36
AfterDeleteLink 39
AfterLink 39
AfterRestore 40
AfterSave 30
AfterSaveDocument 40
ASField object 49
ASFields object 49
ASFile object 47

B

BeforeCancel 40
BeforeDelete 34
BeforeDeleteLink 39
BeforeLink 38
BeforeOpen 33
BeforeRestore 40
BeforeSaveDocument 39
BeforeStartQuery 32
BeforeUndoCheckOut 35
BeforeValidate 27

C
changes 14

D

debug mode 73
debugging 73

dialog element 'Tables' 44
direct window 74

E

editor window 70
enaio® webclient 5
encryption 69

H
Handoff files 15

I
importing 69

enaio®

Page 76

Index

installation 5

J
JobDrivenEvents 52

K
KernelDrivenEvents 52

L
license 5

M
methods 45

o)

OnAddLocation 37
OnChangeActivePage 41
OnClickltem 21
OnCreateCopy 38
OnMove 36
OnMoveExtern 37
OnShow 24

oxactive.dll 16, 45

P
PDF file 4

Q
Quickfinder 27

R

RequestPage object 49
RequestPages object 48
return values 16

S

StartAction 15
system role 5

T
Temporary directory 15

Y
variable monitoring 74

enaio® editor-for-events Index

w
write-protection of fields 27

enaio® Page 77

	enaio® editor-for-events
	Introduction
	About the Manual
	About enaio® editor-for-events
	Events for enaio® webclient

	Installation, Licensing, Security System

	Events
	Quick Introduction
	Client-Side Events
	Events for Changes in Batch Mode
	Event 'StartAction'

	Handoff Files
	Structure of Handoff Files
	Client-Side Handoff Files
	Handoff Data of Tables

	The ActiveX Control OXACTIVE.DLL
	Methods
	Objects
	Examples of Use in VBScript

	Server-Side Events
	Server Events for the Archiving Process

	Server-Side Scripts
	Script Development
	RunScript

	Global Scripts
	Controlling the Info Window
	Event Administration

	enaio® editor-for-events
	enaio® editor-for-events – Introduction
	Creating Events
	Importing Scripts
	The Editor Window
	Export/Import
	Debugging

	Index

